MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpneq Structured version   Visualization version   GIF version

Theorem perpneq 25829
Description: Two perpendicular lines are different. Theorem 8.14 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 18-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
isperp.b (𝜑𝐵 ∈ ran 𝐿)
perpcom.1 (𝜑𝐴(⟂G‘𝐺)𝐵)
Assertion
Ref Expression
perpneq (𝜑𝐴𝐵)

Proof of Theorem perpneq
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . . . . 7 𝑃 = (Base‘𝐺)
2 isperp.i . . . . . . 7 𝐼 = (Itv‘𝐺)
3 isperp.l . . . . . . 7 𝐿 = (LineG‘𝐺)
4 isperp.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54adantr 466 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐺 ∈ TarskiG)
65ad5antr 708 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐺 ∈ TarskiG)
74ad5antr 708 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐺 ∈ TarskiG)
8 isperp.a . . . . . . . . . 10 (𝜑𝐴 ∈ ran 𝐿)
98ad5antr 708 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴 ∈ ran 𝐿)
10 inss1 3979 . . . . . . . . . . 11 (𝐴𝐵) ⊆ 𝐴
11 simpr 471 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥 ∈ (𝐴𝐵))
1210, 11sseldi 3748 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥𝐴)
1312ad4antr 704 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝐴)
141, 3, 2, 7, 9, 13tglnpt 25664 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑃)
1514adantl4r 737 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑃)
16 isperp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ran 𝐿)
1716ad5antr 708 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐵 ∈ ran 𝐿)
18 simplr 744 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝐵)
191, 3, 2, 7, 17, 18tglnpt 25664 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑃)
2019adantl4r 737 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑃)
21 simp-4r 762 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝐴)
221, 3, 2, 7, 9, 21tglnpt 25664 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑃)
2322adantl4r 737 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑃)
24 isperp.d . . . . . . . . 9 = (dist‘𝐺)
25 eqid 2770 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
26 simp-4r 762 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝐴)
27 simplr 744 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝐵)
28 simp-5r 766 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺))
29 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝑦 = 𝑢)
30 eqidd 2771 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝑥 = 𝑥)
31 eqidd 2771 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝑧 = 𝑧)
3229, 30, 31s3eqd 13817 . . . . . . . . . . . 12 (𝑦 = 𝑢 → ⟨“𝑦𝑥𝑧”⟩ = ⟨“𝑢𝑥𝑧”⟩)
3332eleq1d 2834 . . . . . . . . . . 11 (𝑦 = 𝑢 → (⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑢𝑥𝑧”⟩ ∈ (∟G‘𝐺)))
34 eqidd 2771 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑢 = 𝑢)
35 eqidd 2771 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑥 = 𝑥)
36 id 22 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑧 = 𝑣)
3734, 35, 36s3eqd 13817 . . . . . . . . . . . 12 (𝑧 = 𝑣 → ⟨“𝑢𝑥𝑧”⟩ = ⟨“𝑢𝑥𝑣”⟩)
3837eleq1d 2834 . . . . . . . . . . 11 (𝑧 = 𝑣 → (⟨“𝑢𝑥𝑧”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
3933, 38rspc2va 3471 . . . . . . . . . 10 (((𝑢𝐴𝑣𝐵) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
4026, 27, 28, 39syl21anc 1474 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
41 simpllr 752 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑢)
4241necomd 2997 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑥)
4342adantl4r 737 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑥)
44 simpr 471 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑣)
4544necomd 2997 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑥)
4645adantl4r 737 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑥)
471, 24, 2, 3, 25, 6, 23, 15, 20, 40, 43, 46ragncol 25824 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ¬ (𝑣 ∈ (𝑢𝐿𝑥) ∨ 𝑢 = 𝑥))
481, 3, 2, 6, 23, 15, 20, 47ncolrot2 25678 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ¬ (𝑥 ∈ (𝑣𝐿𝑢) ∨ 𝑣 = 𝑢))
491, 2, 3, 6, 15, 20, 23, 15, 48tglineneq 25759 . . . . . 6 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → (𝑥𝐿𝑣) ≠ (𝑢𝐿𝑥))
5049necomd 2997 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → (𝑢𝐿𝑥) ≠ (𝑥𝐿𝑣))
511, 2, 3, 7, 22, 14, 42, 42, 9, 21, 13tglinethru 25751 . . . . . 6 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴 = (𝑢𝐿𝑥))
5251adantl4r 737 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴 = (𝑢𝐿𝑥))
53 inss2 3980 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐵
5453, 11sseldi 3748 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥𝐵)
5554ad4antr 704 . . . . . . 7 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝐵)
561, 2, 3, 7, 14, 19, 44, 44, 17, 55, 18tglinethru 25751 . . . . . 6 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐵 = (𝑥𝐿𝑣))
5756adantl4r 737 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐵 = (𝑥𝐿𝑣))
5850, 52, 573netr4d 3019 . . . 4 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴𝐵)
5916adantr 466 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐵 ∈ ran 𝐿)
601, 2, 3, 5, 59, 54tglnpt2 25756 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → ∃𝑣𝐵 𝑥𝑣)
6160ad3antrrr 701 . . . 4 (((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) → ∃𝑣𝐵 𝑥𝑣)
6258, 61r19.29a 3225 . . 3 (((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) → 𝐴𝐵)
638adantr 466 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐴 ∈ ran 𝐿)
641, 2, 3, 5, 63, 12tglnpt2 25756 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → ∃𝑢𝐴 𝑥𝑢)
6564adantr 466 . . 3 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) → ∃𝑢𝐴 𝑥𝑢)
6662, 65r19.29a 3225 . 2 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) → 𝐴𝐵)
67 perpcom.1 . . 3 (𝜑𝐴(⟂G‘𝐺)𝐵)
681, 24, 2, 3, 4, 8, 16isperp 25827 . . 3 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)))
6967, 68mpbid 222 . 2 (𝜑 → ∃𝑥 ∈ (𝐴𝐵)∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺))
7066, 69r19.29a 3225 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wne 2942  wral 3060  wrex 3061  cin 3720   class class class wbr 4784  ran crn 5250  cfv 6031  (class class class)co 6792  ⟨“cs3 13795  Basecbs 16063  distcds 16157  TarskiGcstrkg 25549  Itvcitv 25555  LineGclng 25556  pInvGcmir 25767  ∟Gcrag 25808  ⟂Gcperpg 25810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-xnn0 11565  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13494  df-concat 13496  df-s1 13497  df-s2 13801  df-s3 13802  df-trkgc 25567  df-trkgb 25568  df-trkgcb 25569  df-trkg 25572  df-cgrg 25626  df-mir 25768  df-rag 25809  df-perpg 25811
This theorem is referenced by:  isperp2  25830  footne  25835  lmieu  25896
  Copyright terms: Public domain W3C validator