MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpcom Structured version   Visualization version   GIF version

Theorem perpcom 25829
Description: The "perpendicular" relation commutes. Theorem 8.12 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
isperp.b (𝜑𝐵 ∈ ran 𝐿)
perpcom.1 (𝜑𝐴(⟂G‘𝐺)𝐵)
Assertion
Ref Expression
perpcom (𝜑𝐵(⟂G‘𝐺)𝐴)

Proof of Theorem perpcom
Dummy variables 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 perpcom.1 . 2 (𝜑𝐴(⟂G‘𝐺)𝐵)
2 incom 3956 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
32a1i 11 . . . 4 (𝜑 → (𝐴𝐵) = (𝐵𝐴))
4 ralcom 3246 . . . . 5 (∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵𝑢𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
5 isperp.p . . . . . . . 8 𝑃 = (Base‘𝐺)
6 isperp.d . . . . . . . 8 = (dist‘𝐺)
7 isperp.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
8 isperp.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
9 eqid 2771 . . . . . . . 8 (pInvG‘𝐺) = (pInvG‘𝐺)
10 isperp.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
1110ad3antrrr 709 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝐺 ∈ TarskiG)
12 isperp.a . . . . . . . . . 10 (𝜑𝐴 ∈ ran 𝐿)
1312ad3antrrr 709 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝐴 ∈ ran 𝐿)
14 simplrr 763 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑢𝐴)
155, 8, 7, 11, 13, 14tglnpt 25665 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑢𝑃)
16 inss1 3981 . . . . . . . . . 10 (𝐴𝐵) ⊆ 𝐴
17 simpllr 760 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑥 ∈ (𝐴𝐵))
1816, 17sseldi 3750 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑥𝐴)
195, 8, 7, 11, 13, 18tglnpt 25665 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑥𝑃)
20 isperp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ran 𝐿)
2120ad3antrrr 709 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝐵 ∈ ran 𝐿)
22 simplrl 762 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑣𝐵)
235, 8, 7, 11, 21, 22tglnpt 25665 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑣𝑃)
24 simpr 471 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
255, 6, 7, 8, 9, 11, 15, 19, 23, 24ragcom 25814 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺))
2610ad3antrrr 709 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝐺 ∈ TarskiG)
2720ad3antrrr 709 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝐵 ∈ ran 𝐿)
28 simplrl 762 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑣𝐵)
295, 8, 7, 26, 27, 28tglnpt 25665 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑣𝑃)
3012ad3antrrr 709 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝐴 ∈ ran 𝐿)
31 simpllr 760 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑥 ∈ (𝐴𝐵))
3216, 31sseldi 3750 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑥𝐴)
335, 8, 7, 26, 30, 32tglnpt 25665 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑥𝑃)
34 simplrr 763 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑢𝐴)
355, 8, 7, 26, 30, 34tglnpt 25665 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑢𝑃)
36 simpr 471 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺))
375, 6, 7, 8, 9, 26, 29, 33, 35, 36ragcom 25814 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
3825, 37impbida 802 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) → (⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
39382ralbidva 3137 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → (∀𝑣𝐵𝑢𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
404, 39syl5bb 272 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → (∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
413, 40rexeqbidva 3304 . . 3 (𝜑 → (∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∃𝑥 ∈ (𝐵𝐴)∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
425, 6, 7, 8, 10, 12, 20isperp 25828 . . 3 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
435, 6, 7, 8, 10, 20, 12isperp 25828 . . 3 (𝜑 → (𝐵(⟂G‘𝐺)𝐴 ↔ ∃𝑥 ∈ (𝐵𝐴)∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
4441, 42, 433bitr4d 300 . 2 (𝜑 → (𝐴(⟂G‘𝐺)𝐵𝐵(⟂G‘𝐺)𝐴))
451, 44mpbid 222 1 (𝜑𝐵(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  cin 3722   class class class wbr 4786  ran crn 5250  cfv 6031  ⟨“cs3 13796  Basecbs 16064  distcds 16158  TarskiGcstrkg 25550  Itvcitv 25556  LineGclng 25557  pInvGcmir 25768  ∟Gcrag 25809  ⟂Gcperpg 25811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-xnn0 11566  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-concat 13497  df-s1 13498  df-s2 13802  df-s3 13803  df-trkgc 25568  df-trkgb 25569  df-trkgcb 25570  df-trkg 25573  df-mir 25769  df-rag 25810  df-perpg 25812
This theorem is referenced by:  hlperpnel  25838  colperpexlem3  25845  mideulem2  25847  midex  25850  opphllem5  25864  opphllem6  25865  opphl  25867  lmieu  25897  lnperpex  25916  trgcopy  25917
  Copyright terms: Public domain W3C validator