Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellqrexplicit Structured version   Visualization version   GIF version

Theorem pellqrexplicit 37758
Description: Condition for a calculated real to be a Pell solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellqrexplicit (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷))

Proof of Theorem pellqrexplicit
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0re 11339 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
213ad2ant2 1103 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
3 eldifi 3765 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
433ad2ant1 1102 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐷 ∈ ℕ)
54nnrpd 11908 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐷 ∈ ℝ+)
65rpsqrtcld 14194 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (√‘𝐷) ∈ ℝ+)
76rpred 11910 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (√‘𝐷) ∈ ℝ)
8 nn0re 11339 . . . . . 6 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
983ad2ant3 1104 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
107, 9remulcld 10108 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((√‘𝐷) · 𝐵) ∈ ℝ)
112, 10readdcld 10107 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ)
1211adantr 480 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ)
13 simpl2 1085 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → 𝐴 ∈ ℕ0)
14 simpl3 1086 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → 𝐵 ∈ ℕ0)
15 eqidd 2652 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)))
16 simpr 476 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)
17 oveq1 6697 . . . . . 6 (𝑎 = 𝐴 → (𝑎 + ((√‘𝐷) · 𝑏)) = (𝐴 + ((√‘𝐷) · 𝑏)))
1817eqeq2d 2661 . . . . 5 (𝑎 = 𝐴 → ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ↔ (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏))))
19 oveq1 6697 . . . . . . 7 (𝑎 = 𝐴 → (𝑎↑2) = (𝐴↑2))
2019oveq1d 6705 . . . . . 6 (𝑎 = 𝐴 → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝐴↑2) − (𝐷 · (𝑏↑2))))
2120eqeq1d 2653 . . . . 5 (𝑎 = 𝐴 → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1))
2218, 21anbi12d 747 . . . 4 (𝑎 = 𝐴 → (((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ∧ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1)))
23 oveq2 6698 . . . . . . 7 (𝑏 = 𝐵 → ((√‘𝐷) · 𝑏) = ((√‘𝐷) · 𝐵))
2423oveq2d 6706 . . . . . 6 (𝑏 = 𝐵 → (𝐴 + ((√‘𝐷) · 𝑏)) = (𝐴 + ((√‘𝐷) · 𝐵)))
2524eqeq2d 2661 . . . . 5 (𝑏 = 𝐵 → ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ↔ (𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵))))
26 oveq1 6697 . . . . . . . 8 (𝑏 = 𝐵 → (𝑏↑2) = (𝐵↑2))
2726oveq2d 6706 . . . . . . 7 (𝑏 = 𝐵 → (𝐷 · (𝑏↑2)) = (𝐷 · (𝐵↑2)))
2827oveq2d 6706 . . . . . 6 (𝑏 = 𝐵 → ((𝐴↑2) − (𝐷 · (𝑏↑2))) = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
2928eqeq1d 2653 . . . . 5 (𝑏 = 𝐵 → (((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1))
3025, 29anbi12d 747 . . . 4 (𝑏 = 𝐵 → (((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝑏)) ∧ ((𝐴↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)))
3122, 30rspc2ev 3355 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
3213, 14, 15, 16, 31syl112anc 1370 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
33 elpell1qr 37728 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
34333ad2ant1 1102 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
3534adantr 480 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷) ↔ ((𝐴 + ((√‘𝐷) · 𝐵)) ∈ ℝ ∧ ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ((𝐴 + ((√‘𝐷) · 𝐵)) = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
3612, 32, 35mpbir2and 977 1 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wrex 2942  cdif 3604  cfv 5926  (class class class)co 6690  cr 9973  1c1 9975   + caddc 9977   · cmul 9979  cmin 10304  cn 11058  2c2 11108  0cn0 11330  cexp 12900  csqrt 14017  NNcsquarenn 37717  Pell1QRcpell1qr 37718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-pell1qr 37723
This theorem is referenced by:  pellqrex  37760  rmspecfund  37791
  Copyright terms: Public domain W3C validator