![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundgt1 | Structured version Visualization version GIF version |
Description: Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
Ref | Expression |
---|---|
pellfundgt1 | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 10218 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ) | |
2 | eldifi 3863 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ) | |
3 | 2 | peano2nnd 11200 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ) |
4 | 3 | nnrpd 12034 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ+) |
5 | 4 | rpsqrtcld 14320 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ+) |
6 | 5 | rpred 12036 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ) |
7 | 2 | nnrpd 12034 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ+) |
8 | 7 | rpsqrtcld 14320 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ+) |
9 | 8 | rpred 12036 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ) |
10 | 6, 9 | readdcld 10232 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ) |
11 | pellfundre 37916 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ) | |
12 | sqrt1 14182 | . . . . 5 ⊢ (√‘1) = 1 | |
13 | 12, 1 | syl5eqel 2831 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ∈ ℝ) |
14 | 13, 13 | readdcld 10232 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ∈ ℝ) |
15 | 1lt2 11357 | . . . . 5 ⊢ 1 < 2 | |
16 | 12, 12 | oveq12i 6813 | . . . . . 6 ⊢ ((√‘1) + (√‘1)) = (1 + 1) |
17 | 1p1e2 11297 | . . . . . 6 ⊢ (1 + 1) = 2 | |
18 | 16, 17 | eqtri 2770 | . . . . 5 ⊢ ((√‘1) + (√‘1)) = 2 |
19 | 15, 18 | breqtrri 4819 | . . . 4 ⊢ 1 < ((√‘1) + (√‘1)) |
20 | 19 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘1) + (√‘1))) |
21 | 3 | nnge1d 11226 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ (𝐷 + 1)) |
22 | 0le1 10714 | . . . . . . 7 ⊢ 0 ≤ 1 | |
23 | 22 | a1i 11 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 1) |
24 | 2 | nnred 11198 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ) |
25 | peano2re 10372 | . . . . . . 7 ⊢ (𝐷 ∈ ℝ → (𝐷 + 1) ∈ ℝ) | |
26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ) |
27 | 3 | nnnn0d 11514 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ0) |
28 | 27 | nn0ge0d 11517 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ (𝐷 + 1)) |
29 | 1, 23, 26, 28 | sqrtled 14335 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ (𝐷 + 1) ↔ (√‘1) ≤ (√‘(𝐷 + 1)))) |
30 | 21, 29 | mpbid 222 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘(𝐷 + 1))) |
31 | 2 | nnge1d 11226 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ 𝐷) |
32 | 2 | nnnn0d 11514 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ0) |
33 | 32 | nn0ge0d 11517 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 𝐷) |
34 | 1, 23, 24, 33 | sqrtled 14335 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ 𝐷 ↔ (√‘1) ≤ (√‘𝐷))) |
35 | 31, 34 | mpbid 222 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘𝐷)) |
36 | 13, 13, 6, 9, 30, 35 | le2addd 10809 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ≤ ((√‘(𝐷 + 1)) + (√‘𝐷))) |
37 | 1, 14, 10, 20, 36 | ltletrd 10360 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘(𝐷 + 1)) + (√‘𝐷))) |
38 | pellfundge 37917 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷)) | |
39 | 1, 10, 11, 37, 38 | ltletrd 10360 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2127 ∖ cdif 3700 class class class wbr 4792 ‘cfv 6037 (class class class)co 6801 ℝcr 10098 0cc0 10099 1c1 10100 + caddc 10102 < clt 10237 ≤ cle 10238 ℕcn 11183 2c2 11233 √csqrt 14143 ◻NNcsquarenn 37871 PellFundcpellfund 37875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-inf2 8699 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-se 5214 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-isom 6046 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-omul 7722 df-er 7899 df-map 8013 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8501 df-inf 8502 df-oi 8568 df-card 8926 df-acn 8929 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-n0 11456 df-xnn0 11527 df-z 11541 df-uz 11851 df-q 11953 df-rp 11997 df-ico 12345 df-fz 12491 df-fl 12758 df-mod 12834 df-seq 12967 df-exp 13026 df-hash 13283 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 df-dvds 15154 df-gcd 15390 df-numer 15616 df-denom 15617 df-squarenn 37876 df-pell1qr 37877 df-pell14qr 37878 df-pell1234qr 37879 df-pellfund 37880 |
This theorem is referenced by: pellfundex 37921 pellfundrp 37923 pellfundne1 37924 pellfund14 37933 |
Copyright terms: Public domain | W3C validator |