Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundglb Structured version   Visualization version   GIF version

Theorem pellfundglb 37968
Description: If a real is larger than the fundamental solution, there is a nontrivial solution less than it. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pellfundglb ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑥𝑥 < 𝐴))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐴

Proof of Theorem pellfundglb
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pellfundval 37963 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
213ad2ant1 1126 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
3 simp3 1131 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (PellFund‘𝐷) < 𝐴)
42, 3eqbrtrrd 4808 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) < 𝐴)
5 pellfundre 37964 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ)
653ad2ant1 1126 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (PellFund‘𝐷) ∈ ℝ)
72, 6eqeltrrd 2850 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) ∈ ℝ)
8 simp2 1130 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → 𝐴 ∈ ℝ)
97, 8ltnled 10385 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) < 𝐴 ↔ ¬ 𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )))
104, 9mpbid 222 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ¬ 𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
11 ssrab2 3834 . . . . . 6 {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ (Pell14QR‘𝐷)
12 pell14qrre 37940 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷)) → 𝑎 ∈ ℝ)
1312ex 397 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) → 𝑎 ∈ ℝ))
1413ssrdv 3756 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ ℝ)
15143ad2ant1 1126 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (Pell14QR‘𝐷) ⊆ ℝ)
1611, 15syl5ss 3761 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ)
17 pell1qrss14 37951 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
18173ad2ant1 1126 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
19 pellqrex 37962 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎)
20193ad2ant1 1126 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎)
21 ssrexv 3814 . . . . . . 7 ((Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷) → (∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎 → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎))
2218, 20, 21sylc 65 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)
23 rabn0 4102 . . . . . 6 ({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ↔ ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)
2422, 23sylibr 224 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅)
25 infmrgelbi 37961 . . . . . 6 ((({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥) → 𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
2625ex 397 . . . . 5 (({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ∧ 𝐴 ∈ ℝ) → (∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )))
2716, 24, 8, 26syl3anc 1475 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )))
2810, 27mtod 189 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ¬ ∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥)
29 rexnal 3142 . . 3 (∃𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ¬ 𝐴𝑥 ↔ ¬ ∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥)
3028, 29sylibr 224 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ¬ 𝐴𝑥)
31 breq2 4788 . . . . . . . 8 (𝑎 = 𝑥 → (1 < 𝑎 ↔ 1 < 𝑥))
3231elrab 3513 . . . . . . 7 (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥))
33 simprl 746 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝑥 ∈ (Pell14QR‘𝐷))
34 1red 10256 . . . . . . . . . 10 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 1 ∈ ℝ)
35 simpl1 1226 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝐷 ∈ (ℕ ∖ ◻NN))
36 pell14qrre 37940 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑥 ∈ (Pell14QR‘𝐷)) → 𝑥 ∈ ℝ)
3735, 33, 36syl2anc 565 . . . . . . . . . 10 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝑥 ∈ ℝ)
38 simprr 748 . . . . . . . . . 10 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 1 < 𝑥)
3934, 37, 38ltled 10386 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 1 ≤ 𝑥)
4033, 39jca 495 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝑥))
41 elpell1qr2 37955 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑥 ∈ (Pell1QR‘𝐷) ↔ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝑥)))
4235, 41syl 17 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → (𝑥 ∈ (Pell1QR‘𝐷) ↔ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝑥)))
4340, 42mpbird 247 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝑥 ∈ (Pell1QR‘𝐷))
4432, 43sylan2b 573 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ 𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}) → 𝑥 ∈ (Pell1QR‘𝐷))
4544adantrr 688 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ (Pell1QR‘𝐷))
46 simpl1 1226 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝐷 ∈ (ℕ ∖ ◻NN))
47 simprl 746 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎})
4811, 47sseldi 3748 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ (Pell14QR‘𝐷))
49 simpr 471 . . . . . . . . . . 11 ((𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥) → 1 < 𝑥)
5049a1i 11 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ((𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥) → 1 < 𝑥))
5132, 50syl5bi 232 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} → 1 < 𝑥))
5251imp 393 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ 𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}) → 1 < 𝑥)
5352adantrr 688 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 1 < 𝑥)
54 pellfundlb 37967 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥) → (PellFund‘𝐷) ≤ 𝑥)
5546, 48, 53, 54syl3anc 1475 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → (PellFund‘𝐷) ≤ 𝑥)
56 simprr 748 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → ¬ 𝐴𝑥)
5715adantr 466 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → (Pell14QR‘𝐷) ⊆ ℝ)
5857, 48sseldd 3751 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ ℝ)
59 simpl2 1228 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝐴 ∈ ℝ)
6058, 59ltnled 10385 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
6156, 60mpbird 247 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 < 𝐴)
6255, 61jca 495 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → ((PellFund‘𝐷) ≤ 𝑥𝑥 < 𝐴))
6345, 62jca 495 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → (𝑥 ∈ (Pell1QR‘𝐷) ∧ ((PellFund‘𝐷) ≤ 𝑥𝑥 < 𝐴)))
6463ex 397 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ((𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥) → (𝑥 ∈ (Pell1QR‘𝐷) ∧ ((PellFund‘𝐷) ≤ 𝑥𝑥 < 𝐴))))
6564reximdv2 3161 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (∃𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ¬ 𝐴𝑥 → ∃𝑥 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑥𝑥 < 𝐴)))
6630, 65mpd 15 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑥𝑥 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942  wral 3060  wrex 3061  {crab 3064  cdif 3718  wss 3721  c0 4061   class class class wbr 4784  cfv 6031  infcinf 8502  cr 10136  1c1 10138   < clt 10275  cle 10276  cn 11221  NNcsquarenn 37919  Pell1QRcpell1qr 37920  Pell14QRcpell14qr 37922  PellFundcpellfund 37923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-omul 7717  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-acn 8967  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-xnn0 11565  df-z 11579  df-uz 11888  df-q 11991  df-rp 12035  df-ico 12385  df-fz 12533  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-dvds 15189  df-gcd 15424  df-numer 15649  df-denom 15650  df-squarenn 37924  df-pell1qr 37925  df-pell14qr 37926  df-pell1234qr 37927  df-pellfund 37928
This theorem is referenced by:  pellfundex  37969
  Copyright terms: Public domain W3C validator