![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundge | Structured version Visualization version GIF version |
Description: Lower bound on the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
Ref | Expression |
---|---|
pellfundge | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3824 | . . . 4 ⊢ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ (Pell14QR‘𝐷) | |
2 | pell14qrre 37919 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷)) → 𝑎 ∈ ℝ) | |
3 | 2 | ex 449 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) → 𝑎 ∈ ℝ)) |
4 | 3 | ssrdv 3746 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ ℝ) |
5 | 1, 4 | syl5ss 3751 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ) |
6 | pell1qrss14 37930 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷)) | |
7 | pellqrex 37941 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎) | |
8 | ssrexv 3804 | . . . . 5 ⊢ ((Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷) → (∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎 → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)) | |
9 | 6, 7, 8 | sylc 65 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎) |
10 | rabn0 4097 | . . . 4 ⊢ ({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ↔ ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎) | |
11 | 9, 10 | sylibr 224 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅) |
12 | eldifi 3871 | . . . . . . . 8 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ) | |
13 | 12 | peano2nnd 11225 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ) |
14 | 13 | nnrpd 12059 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ+) |
15 | 14 | rpsqrtcld 14345 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ+) |
16 | 15 | rpred 12061 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ) |
17 | 12 | nnrpd 12059 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ+) |
18 | 17 | rpsqrtcld 14345 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ+) |
19 | 18 | rpred 12061 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ) |
20 | 16, 19 | readdcld 10257 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ) |
21 | breq2 4804 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (1 < 𝑎 ↔ 1 < 𝑏)) | |
22 | 21 | elrab 3500 | . . . . 5 ⊢ (𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝑏 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑏)) |
23 | pell14qrgap 37937 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑏 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑏) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏) | |
24 | 23 | 3expib 1117 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑏 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑏) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏)) |
25 | 22, 24 | syl5bi 232 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏)) |
26 | 25 | ralrimiv 3099 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∀𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏) |
27 | infmrgelbi 37940 | . . 3 ⊢ ((({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ∧ ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ) ∧ ∀𝑏 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝑏) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )) | |
28 | 5, 11, 20, 26, 27 | syl31anc 1480 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )) |
29 | pellfundval 37942 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )) | |
30 | 28, 29 | breqtrrd 4828 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2135 ≠ wne 2928 ∀wral 3046 ∃wrex 3047 {crab 3050 ∖ cdif 3708 ⊆ wss 3711 ∅c0 4054 class class class wbr 4800 ‘cfv 6045 (class class class)co 6809 infcinf 8508 ℝcr 10123 1c1 10125 + caddc 10127 < clt 10262 ≤ cle 10263 ℕcn 11208 √csqrt 14168 ◻NNcsquarenn 37898 Pell1QRcpell1qr 37899 Pell14QRcpell14qr 37901 PellFundcpellfund 37902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-inf2 8707 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 ax-pre-sup 10202 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-se 5222 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-isom 6054 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-1st 7329 df-2nd 7330 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-1o 7725 df-oadd 7729 df-omul 7730 df-er 7907 df-map 8021 df-en 8118 df-dom 8119 df-sdom 8120 df-fin 8121 df-sup 8509 df-inf 8510 df-oi 8576 df-card 8951 df-acn 8954 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-div 10873 df-nn 11209 df-2 11267 df-3 11268 df-n0 11481 df-xnn0 11552 df-z 11566 df-uz 11876 df-q 11978 df-rp 12022 df-ico 12370 df-fz 12516 df-fl 12783 df-mod 12859 df-seq 12992 df-exp 13051 df-hash 13308 df-cj 14034 df-re 14035 df-im 14036 df-sqrt 14170 df-abs 14171 df-dvds 15179 df-gcd 15415 df-numer 15641 df-denom 15642 df-squarenn 37903 df-pell1qr 37904 df-pell14qr 37905 df-pell1234qr 37906 df-pellfund 37907 |
This theorem is referenced by: pellfundgt1 37945 rmspecfund 37972 |
Copyright terms: Public domain | W3C validator |