Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundex Structured version   Visualization version   GIF version

Theorem pellfundex 37767
Description: The fundamental solution as an infimum is itself a solution, showing that the solution set is discrete.

Since the fundamental solution is an infimum, there must be an element ge to Fund and lt 2*Fund. If this element is equal to the fundamental solution we're done, otherwise use the infimum again to find another element which must be ge Fund and lt the first element; their ratio is a group element in (1,2), contradicting pell14qrgapw 37757. (Contributed by Stefan O'Rear, 18-Sep-2014.)

Assertion
Ref Expression
pellfundex (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))

Proof of Theorem pellfundex
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 11128 . . . 4 2 ∈ ℝ
2 pellfundre 37762 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ)
3 remulcl 10059 . . . 4 ((2 ∈ ℝ ∧ (PellFund‘𝐷) ∈ ℝ) → (2 · (PellFund‘𝐷)) ∈ ℝ)
41, 2, 3sylancr 696 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (2 · (PellFund‘𝐷)) ∈ ℝ)
5 0red 10079 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ∈ ℝ)
6 1red 10093 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ)
7 0lt1 10588 . . . . . . . 8 0 < 1
87a1i 11 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 < 1)
9 pellfundgt1 37764 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))
105, 6, 2, 8, 9lttrd 10236 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 < (PellFund‘𝐷))
112, 10elrpd 11907 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ+)
122, 11ltaddrpd 11943 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) < ((PellFund‘𝐷) + (PellFund‘𝐷)))
132recnd 10106 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℂ)
14132timesd 11313 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (2 · (PellFund‘𝐷)) = ((PellFund‘𝐷) + (PellFund‘𝐷)))
1512, 14breqtrrd 4713 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) < (2 · (PellFund‘𝐷)))
16 pellfundglb 37766 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (2 · (PellFund‘𝐷)) ∈ ℝ ∧ (PellFund‘𝐷) < (2 · (PellFund‘𝐷))) → ∃𝑎 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))))
174, 15, 16mpd3an23 1466 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))))
182adantr 480 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → (PellFund‘𝐷) ∈ ℝ)
19 pell1qrss14 37749 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
2019sselda 3636 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → 𝑎 ∈ (Pell14QR‘𝐷))
21 pell14qrre 37738 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷)) → 𝑎 ∈ ℝ)
2220, 21syldan 486 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → 𝑎 ∈ ℝ)
2318, 22leloed 10218 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) ≤ 𝑎 ↔ ((PellFund‘𝐷) < 𝑎 ∨ (PellFund‘𝐷) = 𝑎)))
24 simp-4l 823 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝐷 ∈ (ℕ ∖ ◻NN))
25 simp-4r 824 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 ∈ (Pell1QR‘𝐷))
26 simplr 807 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 ∈ (Pell1QR‘𝐷))
27 simprr 811 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 < 𝑎)
2822ad3antrrr 766 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 ∈ ℝ)
294ad4antr 769 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (2 · (PellFund‘𝐷)) ∈ ℝ)
3019ad4antr 769 . . . . . . . . . . . . 13 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
3130, 26sseldd 3637 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 ∈ (Pell14QR‘𝐷))
32 pell14qrre 37738 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑏 ∈ (Pell14QR‘𝐷)) → 𝑏 ∈ ℝ)
3324, 31, 32syl2anc 694 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 ∈ ℝ)
34 remulcl 10059 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (2 · 𝑏) ∈ ℝ)
351, 33, 34sylancr 696 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (2 · 𝑏) ∈ ℝ)
36 simprr 811 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → 𝑎 < (2 · (PellFund‘𝐷)))
3736ad2antrr 762 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 < (2 · (PellFund‘𝐷)))
38 simprl 809 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (PellFund‘𝐷) ≤ 𝑏)
392ad4antr 769 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (PellFund‘𝐷) ∈ ℝ)
401a1i 11 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 2 ∈ ℝ)
41 2pos 11150 . . . . . . . . . . . . 13 0 < 2
4241a1i 11 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 0 < 2)
43 lemul2 10914 . . . . . . . . . . . 12 (((PellFund‘𝐷) ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((PellFund‘𝐷) ≤ 𝑏 ↔ (2 · (PellFund‘𝐷)) ≤ (2 · 𝑏)))
4439, 33, 40, 42, 43syl112anc 1370 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → ((PellFund‘𝐷) ≤ 𝑏 ↔ (2 · (PellFund‘𝐷)) ≤ (2 · 𝑏)))
4538, 44mpbid 222 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (2 · (PellFund‘𝐷)) ≤ (2 · 𝑏))
4628, 29, 35, 37, 45ltletrd 10235 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 < (2 · 𝑏))
47 simp1 1081 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝐷 ∈ (ℕ ∖ ◻NN))
48193ad2ant1 1102 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
49 simp2l 1107 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 ∈ (Pell1QR‘𝐷))
5048, 49sseldd 3637 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 ∈ (Pell14QR‘𝐷))
51 simp2r 1108 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ (Pell1QR‘𝐷))
5248, 51sseldd 3637 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ (Pell14QR‘𝐷))
53 pell14qrdivcl 37746 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷) ∧ 𝑏 ∈ (Pell14QR‘𝐷)) → (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷))
5447, 50, 52, 53syl3anc 1366 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷))
5547, 52, 32syl2anc 694 . . . . . . . . . . . . . 14 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ ℝ)
5655recnd 10106 . . . . . . . . . . . . 13 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ ℂ)
5756mulid2d 10096 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (1 · 𝑏) = 𝑏)
58 simp3l 1109 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 < 𝑎)
5957, 58eqbrtrd 4707 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (1 · 𝑏) < 𝑎)
60 1red 10093 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 1 ∈ ℝ)
6147, 50, 21syl2anc 694 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 ∈ ℝ)
62 pell14qrgt0 37740 . . . . . . . . . . . . 13 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑏 ∈ (Pell14QR‘𝐷)) → 0 < 𝑏)
6347, 52, 62syl2anc 694 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 0 < 𝑏)
64 ltmuldiv 10934 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 0 < 𝑏)) → ((1 · 𝑏) < 𝑎 ↔ 1 < (𝑎 / 𝑏)))
6560, 61, 55, 63, 64syl112anc 1370 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → ((1 · 𝑏) < 𝑎 ↔ 1 < (𝑎 / 𝑏)))
6659, 65mpbid 222 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 1 < (𝑎 / 𝑏))
67 simp3r 1110 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 < (2 · 𝑏))
681a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 2 ∈ ℝ)
69 ltdivmul2 10938 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 0 < 𝑏)) → ((𝑎 / 𝑏) < 2 ↔ 𝑎 < (2 · 𝑏)))
7061, 68, 55, 63, 69syl112anc 1370 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → ((𝑎 / 𝑏) < 2 ↔ 𝑎 < (2 · 𝑏)))
7167, 70mpbird 247 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (𝑎 / 𝑏) < 2)
72 simprr 811 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (𝑎 / 𝑏) < 2)
73 simpll 805 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → 𝐷 ∈ (ℕ ∖ ◻NN))
74 simplr 807 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷))
75 simprl 809 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → 1 < (𝑎 / 𝑏))
76 pell14qrgapw 37757 . . . . . . . . . . . . 13 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷) ∧ 1 < (𝑎 / 𝑏)) → 2 < (𝑎 / 𝑏))
7773, 74, 75, 76syl3anc 1366 . . . . . . . . . . . 12 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → 2 < (𝑎 / 𝑏))
78 pell14qrre 37738 . . . . . . . . . . . . . 14 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) → (𝑎 / 𝑏) ∈ ℝ)
7978adantr 480 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (𝑎 / 𝑏) ∈ ℝ)
80 ltnsym 10173 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (𝑎 / 𝑏) ∈ ℝ) → (2 < (𝑎 / 𝑏) → ¬ (𝑎 / 𝑏) < 2))
811, 79, 80sylancr 696 . . . . . . . . . . . 12 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (2 < (𝑎 / 𝑏) → ¬ (𝑎 / 𝑏) < 2))
8277, 81mpd 15 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → ¬ (𝑎 / 𝑏) < 2)
8372, 82pm2.21dd 186 . . . . . . . . . 10 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
8447, 54, 66, 71, 83syl22anc 1367 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
8524, 25, 26, 27, 46, 84syl122anc 1375 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
86 simpll 805 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → 𝐷 ∈ (ℕ ∖ ◻NN))
8722adantr 480 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → 𝑎 ∈ ℝ)
88 simprl 809 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → (PellFund‘𝐷) < 𝑎)
89 pellfundglb 37766 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ ℝ ∧ (PellFund‘𝐷) < 𝑎) → ∃𝑏 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎))
9086, 87, 88, 89syl3anc 1366 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → ∃𝑏 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎))
9185, 90r19.29a 3107 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
9291exp32 630 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) < 𝑎 → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
93 simp2 1082 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ (PellFund‘𝐷) = 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) = 𝑎)
94 simp1r 1106 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ (PellFund‘𝐷) = 𝑎𝑎 < (2 · (PellFund‘𝐷))) → 𝑎 ∈ (Pell1QR‘𝐷))
9593, 94eqeltrd 2730 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ (PellFund‘𝐷) = 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
96953exp 1283 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) = 𝑎 → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
9792, 96jaod 394 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → (((PellFund‘𝐷) < 𝑎 ∨ (PellFund‘𝐷) = 𝑎) → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
9823, 97sylbid 230 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) ≤ 𝑎 → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
9998impd 446 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → (((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷)))
10099rexlimdva 3060 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑎 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷)))
10117, 100mpd 15 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wrex 2942  cdif 3604  wss 3607   class class class wbr 4685  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113   / cdiv 10722  cn 11058  2c2 11108  NNcsquarenn 37717  Pell1QRcpell1qr 37718  Pell14QRcpell14qr 37720  PellFundcpellfund 37721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-ico 12219  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-numer 15490  df-denom 15491  df-squarenn 37722  df-pell1qr 37723  df-pell14qr 37724  df-pell1234qr 37725  df-pellfund 37726
This theorem is referenced by:  pellfund14  37779  pellfund14b  37780
  Copyright terms: Public domain W3C validator