![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pellexlem4 | Structured version Visualization version GIF version |
Description: Lemma for pellex 37901. Invoking irrapx1 37894, we have infinitely many near-solutions. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
Ref | Expression |
---|---|
pellexlem4 | ⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 11218 | . . . . 5 ⊢ ℕ ∈ V | |
2 | 1, 1 | xpex 7127 | . . . 4 ⊢ (ℕ × ℕ) ∈ V |
3 | opabssxp 5350 | . . . 4 ⊢ {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ⊆ (ℕ × ℕ) | |
4 | ssdomg 8167 | . . . 4 ⊢ ((ℕ × ℕ) ∈ V → ({〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ⊆ (ℕ × ℕ) → {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≼ (ℕ × ℕ))) | |
5 | 2, 3, 4 | mp2 9 | . . 3 ⊢ {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≼ (ℕ × ℕ) |
6 | xpnnen 15138 | . . 3 ⊢ (ℕ × ℕ) ≈ ℕ | |
7 | domentr 8180 | . . 3 ⊢ (({〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≼ ℕ) | |
8 | 5, 6, 7 | mp2an 710 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≼ ℕ |
9 | nnrp 12035 | . . . . . . 7 ⊢ (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+) | |
10 | 9 | rpsqrtcld 14349 | . . . . . 6 ⊢ (𝐷 ∈ ℕ → (√‘𝐷) ∈ ℝ+) |
11 | 10 | anim1i 593 | . . . . 5 ⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((√‘𝐷) ∈ ℝ+ ∧ ¬ (√‘𝐷) ∈ ℚ)) |
12 | eldif 3725 | . . . . 5 ⊢ ((√‘𝐷) ∈ (ℝ+ ∖ ℚ) ↔ ((√‘𝐷) ∈ ℝ+ ∧ ¬ (√‘𝐷) ∈ ℚ)) | |
13 | 11, 12 | sylibr 224 | . . . 4 ⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (√‘𝐷) ∈ (ℝ+ ∖ ℚ)) |
14 | irrapx1 37894 | . . . 4 ⊢ ((√‘𝐷) ∈ (ℝ+ ∖ ℚ) → {𝑏 ∈ ℚ ∣ (0 < 𝑏 ∧ (abs‘(𝑏 − (√‘𝐷))) < ((denom‘𝑏)↑-2))} ≈ ℕ) | |
15 | ensym 8170 | . . . 4 ⊢ ({𝑏 ∈ ℚ ∣ (0 < 𝑏 ∧ (abs‘(𝑏 − (√‘𝐷))) < ((denom‘𝑏)↑-2))} ≈ ℕ → ℕ ≈ {𝑏 ∈ ℚ ∣ (0 < 𝑏 ∧ (abs‘(𝑏 − (√‘𝐷))) < ((denom‘𝑏)↑-2))}) | |
16 | 13, 14, 15 | 3syl 18 | . . 3 ⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ℕ ≈ {𝑏 ∈ ℚ ∣ (0 < 𝑏 ∧ (abs‘(𝑏 − (√‘𝐷))) < ((denom‘𝑏)↑-2))}) |
17 | pellexlem3 37897 | . . 3 ⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {𝑏 ∈ ℚ ∣ (0 < 𝑏 ∧ (abs‘(𝑏 − (√‘𝐷))) < ((denom‘𝑏)↑-2))} ≼ {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) | |
18 | endomtr 8179 | . . 3 ⊢ ((ℕ ≈ {𝑏 ∈ ℚ ∣ (0 < 𝑏 ∧ (abs‘(𝑏 − (√‘𝐷))) < ((denom‘𝑏)↑-2))} ∧ {𝑏 ∈ ℚ ∣ (0 < 𝑏 ∧ (abs‘(𝑏 − (√‘𝐷))) < ((denom‘𝑏)↑-2))} ≼ {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) → ℕ ≼ {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) | |
19 | 16, 17, 18 | syl2anc 696 | . 2 ⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ℕ ≼ {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) |
20 | sbth 8245 | . 2 ⊢ (({〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≼ ℕ ∧ ℕ ≼ {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) → {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≈ ℕ) | |
21 | 8, 19, 20 | sylancr 698 | 1 ⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∈ wcel 2139 ≠ wne 2932 {crab 3054 Vcvv 3340 ∖ cdif 3712 ⊆ wss 3715 class class class wbr 4804 {copab 4864 × cxp 5264 ‘cfv 6049 (class class class)co 6813 ≈ cen 8118 ≼ cdom 8119 0cc0 10128 1c1 10129 + caddc 10131 · cmul 10133 < clt 10266 − cmin 10458 -cneg 10459 ℕcn 11212 2c2 11262 ℚcq 11981 ℝ+crp 12025 ↑cexp 13054 √csqrt 14172 abscabs 14173 denomcdenom 15644 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-omul 7734 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-sup 8513 df-inf 8514 df-oi 8580 df-card 8955 df-acn 8958 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-xnn0 11556 df-z 11570 df-uz 11880 df-q 11982 df-rp 12026 df-ico 12374 df-fz 12520 df-fl 12787 df-mod 12863 df-seq 12996 df-exp 13055 df-hash 13312 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-dvds 15183 df-gcd 15419 df-numer 15645 df-denom 15646 |
This theorem is referenced by: pellexlem5 37899 |
Copyright terms: Public domain | W3C validator |