Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrgaplem Structured version   Visualization version   GIF version

Theorem pell1qrgaplem 37939
Description: Lemma for pell1qrgap 37940. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1qrgaplem (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝐴 + ((√‘𝐷) · 𝐵)))

Proof of Theorem pell1qrgaplem
StepHypRef Expression
1 nnrp 12035 . . . . . 6 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+)
21ad2antrr 764 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℝ+)
3 1rp 12029 . . . . . 6 1 ∈ ℝ+
43a1i 11 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈ ℝ+)
52, 4rpaddcld 12080 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) ∈ ℝ+)
65rpsqrtcld 14349 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘(𝐷 + 1)) ∈ ℝ+)
76rpred 12065 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘(𝐷 + 1)) ∈ ℝ)
82rpsqrtcld 14349 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈ ℝ+)
98rpred 12065 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈ ℝ)
10 nn0re 11493 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
1110adantr 472 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
1211ad2antlr 765 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐴 ∈ ℝ)
13 nn0re 11493 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
1413adantl 473 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
1514ad2antlr 765 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℝ)
169, 15remulcld 10262 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘𝐷) · 𝐵) ∈ ℝ)
172rpred 12065 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℝ)
18 1re 10231 . . . . . . . 8 1 ∈ ℝ
1918a1i 11 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈ ℝ)
2015resqcld 13229 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵↑2) ∈ ℝ)
2119, 20resubcld 10650 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 − (𝐵↑2)) ∈ ℝ)
2217, 21remulcld 10262 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) ∈ ℝ)
23 0red 10233 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ∈ ℝ)
2417, 23remulcld 10262 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 0) ∈ ℝ)
2512resqcld 13229 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) ∈ ℝ)
26 sq1 13152 . . . . . . . . 9 (1↑2) = 1
2726a1i 11 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1↑2) = 1)
28 nnge1 11238 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 1 ≤ 𝐵)
2928adantl 473 . . . . . . . . . 10 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 ∈ ℕ) → 1 ≤ 𝐵)
30 simplrl 819 . . . . . . . . . . . 12 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 < (𝐴 + ((√‘𝐷) · 𝐵)))
31 oveq1 6820 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 = 0 → (𝐵↑2) = (0↑2))
3231adantl 473 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐵↑2) = (0↑2))
33 sq0 13149 . . . . . . . . . . . . . . . . . . . . 21 (0↑2) = 0
3432, 33syl6eq 2810 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐵↑2) = 0)
3534oveq2d 6829 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · (𝐵↑2)) = (𝐷 · 0))
362rpcnd 12067 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℂ)
3736adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐷 ∈ ℂ)
3837mul01d 10427 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · 0) = 0)
3935, 38eqtrd 2794 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · (𝐵↑2)) = 0)
4039oveq2d 6829 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = ((𝐴↑2) − 0))
41 simplrr 820 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)
4212recnd 10260 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐴 ∈ ℂ)
4342sqcld 13200 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) ∈ ℂ)
4443adantr 472 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴↑2) ∈ ℂ)
4544subid1d 10573 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − 0) = (𝐴↑2))
4640, 41, 453eqtr3d 2802 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 = (𝐴↑2))
4726, 46syl5req 2807 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴↑2) = (1↑2))
48 nn0ge0 11510 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
4948adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 0 ≤ 𝐴)
5049ad2antlr 765 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 𝐴)
51 0le1 10743 . . . . . . . . . . . . . . . . . 18 0 ≤ 1
5251a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 1)
53 sq11 13130 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
5412, 50, 19, 52, 53syl22anc 1478 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
5554adantr 472 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
5647, 55mpbid 222 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐴 = 1)
57 simpr 479 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐵 = 0)
5857oveq2d 6829 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 𝐵) = ((√‘𝐷) · 0))
598rpcnd 12067 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈ ℂ)
6059adantr 472 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (√‘𝐷) ∈ ℂ)
6160mul01d 10427 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 0) = 0)
6258, 61eqtrd 2794 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 𝐵) = 0)
6356, 62oveq12d 6831 . . . . . . . . . . . . 13 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴 + ((√‘𝐷) · 𝐵)) = (1 + 0))
64 1p0e1 11325 . . . . . . . . . . . . 13 (1 + 0) = 1
6563, 64syl6eq 2810 . . . . . . . . . . . 12 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴 + ((√‘𝐷) · 𝐵)) = 1)
6630, 65breqtrd 4830 . . . . . . . . . . 11 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 < 1)
6718ltnri 10338 . . . . . . . . . . 11 ¬ 1 < 1
68 pm2.24 121 . . . . . . . . . . 11 (1 < 1 → (¬ 1 < 1 → 1 ≤ 𝐵))
6966, 67, 68mpisyl 21 . . . . . . . . . 10 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 ≤ 𝐵)
70 simplrr 820 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℕ0)
71 elnn0 11486 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
7270, 71sylib 208 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵 ∈ ℕ ∨ 𝐵 = 0))
7329, 69, 72mpjaodan 862 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ≤ 𝐵)
74 nn0ge0 11510 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
7574adantl 473 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 0 ≤ 𝐵)
7675ad2antlr 765 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 𝐵)
7719, 15, 52, 76le2sqd 13238 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 ≤ 𝐵 ↔ (1↑2) ≤ (𝐵↑2)))
7873, 77mpbid 222 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1↑2) ≤ (𝐵↑2))
7927, 78eqbrtrrd 4828 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ≤ (𝐵↑2))
8019, 20suble0d 10810 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((1 − (𝐵↑2)) ≤ 0 ↔ 1 ≤ (𝐵↑2)))
8179, 80mpbird 247 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 − (𝐵↑2)) ≤ 0)
8221, 23, 2lemul2d 12109 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((1 − (𝐵↑2)) ≤ 0 ↔ (𝐷 · (1 − (𝐵↑2))) ≤ (𝐷 · 0)))
8381, 82mpbid 222 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) ≤ (𝐷 · 0))
8422, 24, 25, 83leadd2dd 10834 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))) ≤ ((𝐴↑2) + (𝐷 · 0)))
855rpcnd 12067 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) ∈ ℂ)
8685sqsqrtd 14377 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1))↑2) = (𝐷 + 1))
87 simprr 813 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)
8887eqcomd 2766 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
8988oveq2d 6829 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) = (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))))
9015recnd 10260 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℂ)
9190sqcld 13200 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵↑2) ∈ ℂ)
9236, 91mulcld 10252 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (𝐵↑2)) ∈ ℂ)
9336, 43, 92addsub12d 10607 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 − (𝐷 · (𝐵↑2)))))
9419recnd 10260 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈ ℂ)
9536, 94, 91subdid 10678 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) = ((𝐷 · 1) − (𝐷 · (𝐵↑2))))
9636mulid1d 10249 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 1) = 𝐷)
9796oveq1d 6828 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐷 · 1) − (𝐷 · (𝐵↑2))) = (𝐷 − (𝐷 · (𝐵↑2))))
9895, 97eqtr2d 2795 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 − (𝐷 · (𝐵↑2))) = (𝐷 · (1 − (𝐵↑2))))
9998oveq2d 6829 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))))
10093, 99eqtrd 2794 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))))
10186, 89, 1003eqtrd 2798 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1))↑2) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))))
10236mul01d 10427 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 0) = 0)
103102oveq2d 6829 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 · 0)) = ((𝐴↑2) + 0))
10443addid1d 10428 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + 0) = (𝐴↑2))
105103, 104eqtr2d 2795 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) = ((𝐴↑2) + (𝐷 · 0)))
10684, 101, 1053brtr4d 4836 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1))↑2) ≤ (𝐴↑2))
1076rpge0d 12069 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ (√‘(𝐷 + 1)))
1087, 12, 107, 50le2sqd 13238 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) ≤ 𝐴 ↔ ((√‘(𝐷 + 1))↑2) ≤ (𝐴↑2)))
109106, 108mpbird 247 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘(𝐷 + 1)) ≤ 𝐴)
11059mulid1d 10249 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘𝐷) · 1) = (√‘𝐷))
11119, 15, 8lemul2d 12109 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 ≤ 𝐵 ↔ ((√‘𝐷) · 1) ≤ ((√‘𝐷) · 𝐵)))
11273, 111mpbid 222 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘𝐷) · 1) ≤ ((√‘𝐷) · 𝐵))
113110, 112eqbrtrrd 4828 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ≤ ((√‘𝐷) · 𝐵))
1147, 9, 12, 16, 109, 113le2addd 10838 1 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝐴 + ((√‘𝐷) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139   class class class wbr 4804  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458  cn 11212  2c2 11262  0cn0 11484  +crp 12025  cexp 13054  csqrt 14172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175
This theorem is referenced by:  pell1qrgap  37940
  Copyright terms: Public domain W3C validator