Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrmulcl Structured version   Visualization version   GIF version

Theorem pell14qrmulcl 37953
Description: Positive Pell solutions are closed under multiplication. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell14qrmulcl ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell14QR‘𝐷))

Proof of Theorem pell14qrmulcl
StepHypRef Expression
1 simpl 468 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 𝐷 ∈ (ℕ ∖ ◻NN))
2 simprll 764 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 𝐴 ∈ (Pell1234QR‘𝐷))
3 simprrl 766 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 𝐵 ∈ (Pell1234QR‘𝐷))
4 pell1234qrmulcl 37945 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷) ∧ 𝐵 ∈ (Pell1234QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷))
51, 2, 3, 4syl3anc 1476 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → (𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷))
6 pell1234qrre 37942 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ)
72, 6syldan 579 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 𝐴 ∈ ℝ)
8 pell1234qrre 37942 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐵 ∈ (Pell1234QR‘𝐷)) → 𝐵 ∈ ℝ)
93, 8syldan 579 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 𝐵 ∈ ℝ)
10 simprlr 765 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 0 < 𝐴)
11 simprrr 767 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 0 < 𝐵)
127, 9, 10, 11mulgt0d 10398 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → 0 < (𝐴 · 𝐵))
135, 12jca 501 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))) → ((𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷) ∧ 0 < (𝐴 · 𝐵)))
1413ex 397 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵)) → ((𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷) ∧ 0 < (𝐴 · 𝐵))))
15 elpell14qr2 37952 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)))
16 elpell14qr2 37952 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐵 ∈ (Pell14QR‘𝐷) ↔ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵)))
1715, 16anbi12d 616 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) ↔ ((𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴) ∧ (𝐵 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐵))))
18 elpell14qr2 37952 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 · 𝐵) ∈ (Pell14QR‘𝐷) ↔ ((𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷) ∧ 0 < (𝐴 · 𝐵))))
1914, 17, 183imtr4d 283 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell14QR‘𝐷)))
20193impib 1108 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell14QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071  wcel 2145  cdif 3720   class class class wbr 4787  cfv 6030  (class class class)co 6796  cr 10141  0cc0 10142   · cmul 10147   < clt 10280  cn 11226  NNcsquarenn 37926  Pell1234QRcpell1234qr 37928  Pell14QRcpell14qr 37929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-pell14qr 37933  df-pell1234qr 37934
This theorem is referenced by:  pell14qrdivcl  37955  pell14qrexpclnn0  37956  pellfund14  37988
  Copyright terms: Public domain W3C validator