Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1234qrne0 Structured version   Visualization version   GIF version

Theorem pell1234qrne0 37734
Description: No solution to a Pell equation is zero. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
pell1234qrne0 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ≠ 0)

Proof of Theorem pell1234qrne0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell1234qr 37732 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
2 simprl 809 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)))
3 ax-1ne0 10043 . . . . . . . . 9 1 ≠ 0
4 eldifi 3765 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
54adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) → 𝐷 ∈ ℕ)
65nncnd 11074 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) → 𝐷 ∈ ℂ)
76ad3antrrr 766 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → 𝐷 ∈ ℂ)
87sqrtcld 14220 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (√‘𝐷) ∈ ℂ)
9 zcn 11420 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
109ad2antll 765 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ)
1110ad2antrr 762 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → 𝑏 ∈ ℂ)
128, 11sqmuld 13060 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (((√‘𝐷) · 𝑏)↑2) = (((√‘𝐷)↑2) · (𝑏↑2)))
137sqsqrtd 14222 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((√‘𝐷)↑2) = 𝐷)
1413oveq1d 6705 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (((√‘𝐷)↑2) · (𝑏↑2)) = (𝐷 · (𝑏↑2)))
1512, 14eqtr2d 2686 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (𝐷 · (𝑏↑2)) = (((√‘𝐷) · 𝑏)↑2))
1615oveq2d 6706 . . . . . . . . . . . . 13 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)))
17 zcn 11420 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
1817ad2antrl 764 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ)
1918ad2antrr 762 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → 𝑎 ∈ ℂ)
208, 11mulcld 10098 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((√‘𝐷) · 𝑏) ∈ ℂ)
21 subsq 13012 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℂ ∧ ((√‘𝐷) · 𝑏) ∈ ℂ) → ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
2219, 20, 21syl2anc 694 . . . . . . . . . . . . 13 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
2316, 22eqtrd 2685 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
24 simplr 807 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
25 simpr 476 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (𝑎 + ((√‘𝐷) · 𝑏)) = 0)
2625oveq1d 6705 . . . . . . . . . . . . 13 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))) = (0 · (𝑎 − ((√‘𝐷) · 𝑏))))
2719, 20subcld 10430 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (𝑎 − ((√‘𝐷) · 𝑏)) ∈ ℂ)
2827mul02d 10272 . . . . . . . . . . . . 13 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → (0 · (𝑎 − ((√‘𝐷) · 𝑏))) = 0)
2926, 28eqtrd 2685 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))) = 0)
3023, 24, 293eqtr3d 2693 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) ∧ (𝑎 + ((√‘𝐷) · 𝑏)) = 0) → 1 = 0)
3130ex 449 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((𝑎 + ((√‘𝐷) · 𝑏)) = 0 → 1 = 0))
3231necon3d 2844 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (1 ≠ 0 → (𝑎 + ((√‘𝐷) · 𝑏)) ≠ 0))
333, 32mpi 20 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝑎 + ((√‘𝐷) · 𝑏)) ≠ 0)
3433adantrl 752 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + ((√‘𝐷) · 𝑏)) ≠ 0)
352, 34eqnetrd 2890 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ≠ 0)
3635ex 449 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐴 ≠ 0))
3736rexlimdvva 3067 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → 𝐴 ≠ 0))
3837expimpd 628 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ≠ 0))
391, 38sylbid 230 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) → 𝐴 ≠ 0))
4039imp 444 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  wrex 2942  cdif 3604  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  cmin 10304  cn 11058  2c2 11108  cz 11415  cexp 12900  csqrt 14017  NNcsquarenn 37717  Pell1234QRcpell1234qr 37719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-pell1234qr 37725
This theorem is referenced by:  pell1234qrreccl  37735  pell14qrne0  37739
  Copyright terms: Public domain W3C validator