Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1234qrdich Structured version   Visualization version   GIF version

Theorem pell1234qrdich 37951
Description: A general Pell solution is either a positive solution, or its negation is. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1234qrdich ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))

Proof of Theorem pell1234qrdich
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell1234qr 37941 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
2 simp-4r 770 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ ℝ)
3 oveq1 6803 . . . . . . . . . . . . . 14 (𝑐 = 𝑎 → (𝑐 + ((√‘𝐷) · 𝑏)) = (𝑎 + ((√‘𝐷) · 𝑏)))
43eqeq2d 2781 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ↔ 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏))))
5 oveq1 6803 . . . . . . . . . . . . . . 15 (𝑐 = 𝑎 → (𝑐↑2) = (𝑎↑2))
65oveq1d 6811 . . . . . . . . . . . . . 14 (𝑐 = 𝑎 → ((𝑐↑2) − (𝐷 · (𝑏↑2))) = ((𝑎↑2) − (𝐷 · (𝑏↑2))))
76eqeq1d 2773 . . . . . . . . . . . . 13 (𝑐 = 𝑎 → (((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))
84, 7anbi12d 616 . . . . . . . . . . . 12 (𝑐 = 𝑎 → ((𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))
98rexbidv 3200 . . . . . . . . . . 11 (𝑐 = 𝑎 → (∃𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1) ↔ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))
109rspcev 3460 . . . . . . . . . 10 ((𝑎 ∈ ℕ0 ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))
1110adantll 693 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))
12 elpell14qr 37939 . . . . . . . . . 10 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
1312ad4antr 712 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑏 ∈ ℤ (𝐴 = (𝑐 + ((√‘𝐷) · 𝑏)) ∧ ((𝑐↑2) − (𝐷 · (𝑏↑2))) = 1))))
142, 11, 13mpbir2and 692 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ (Pell14QR‘𝐷))
1514orcd 862 . . . . . . 7 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ∈ ℕ0) ∧ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))
1615exp31 406 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (𝑎 ∈ ℕ0 → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))))
17 simp-5r 774 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ ℝ)
1817renegcld 10663 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 ∈ ℝ)
19 simpllr 760 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝑎 ∈ ℕ0)
20 znegcl 11619 . . . . . . . . . . . . 13 (𝑏 ∈ ℤ → -𝑏 ∈ ℤ)
2120ad2antlr 706 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝑏 ∈ ℤ)
22 simprl 754 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)))
2322negeqd 10481 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 = -(𝑎 + ((√‘𝐷) · 𝑏)))
24 zcn 11589 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
2524ad4antlr 714 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑎 ∈ ℂ)
26 eldifi 3883 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
2726nncnd 11242 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℂ)
2827ad5antr 716 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐷 ∈ ℂ)
2928sqrtcld 14384 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (√‘𝐷) ∈ ℂ)
30 zcn 11589 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
3130ad2antlr 706 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑏 ∈ ℂ)
3229, 31mulcld 10266 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷) · 𝑏) ∈ ℂ)
3325, 32negdid 10611 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -(𝑎 + ((√‘𝐷) · 𝑏)) = (-𝑎 + -((√‘𝐷) · 𝑏)))
34 mulneg2 10673 . . . . . . . . . . . . . . . 16 (((√‘𝐷) ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((√‘𝐷) · -𝑏) = -((√‘𝐷) · 𝑏))
3534eqcomd 2777 . . . . . . . . . . . . . . 15 (((√‘𝐷) ∈ ℂ ∧ 𝑏 ∈ ℂ) → -((√‘𝐷) · 𝑏) = ((√‘𝐷) · -𝑏))
3629, 31, 35syl2anc 573 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -((√‘𝐷) · 𝑏) = ((√‘𝐷) · -𝑏))
3736oveq2d 6812 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑎 + -((√‘𝐷) · 𝑏)) = (-𝑎 + ((√‘𝐷) · -𝑏)))
3823, 33, 373eqtrd 2809 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏)))
39 sqneg 13130 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℂ → (-𝑎↑2) = (𝑎↑2))
4025, 39syl 17 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑎↑2) = (𝑎↑2))
41 sqneg 13130 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ℂ → (-𝑏↑2) = (𝑏↑2))
4231, 41syl 17 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑏↑2) = (𝑏↑2))
4342oveq2d 6812 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐷 · (-𝑏↑2)) = (𝐷 · (𝑏↑2)))
4440, 43oveq12d 6814 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = ((𝑎↑2) − (𝐷 · (𝑏↑2))))
45 simprr 756 . . . . . . . . . . . . 13 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
4644, 45eqtrd 2805 . . . . . . . . . . . 12 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)
47 oveq1 6803 . . . . . . . . . . . . . . 15 (𝑐 = -𝑎 → (𝑐 + ((√‘𝐷) · 𝑑)) = (-𝑎 + ((√‘𝐷) · 𝑑)))
4847eqeq2d 2781 . . . . . . . . . . . . . 14 (𝑐 = -𝑎 → (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ↔ -𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑))))
49 oveq1 6803 . . . . . . . . . . . . . . . 16 (𝑐 = -𝑎 → (𝑐↑2) = (-𝑎↑2))
5049oveq1d 6811 . . . . . . . . . . . . . . 15 (𝑐 = -𝑎 → ((𝑐↑2) − (𝐷 · (𝑑↑2))) = ((-𝑎↑2) − (𝐷 · (𝑑↑2))))
5150eqeq1d 2773 . . . . . . . . . . . . . 14 (𝑐 = -𝑎 → (((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 ↔ ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1))
5248, 51anbi12d 616 . . . . . . . . . . . . 13 (𝑐 = -𝑎 → ((-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) ↔ (-𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑)) ∧ ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1)))
53 oveq2 6804 . . . . . . . . . . . . . . . 16 (𝑑 = -𝑏 → ((√‘𝐷) · 𝑑) = ((√‘𝐷) · -𝑏))
5453oveq2d 6812 . . . . . . . . . . . . . . 15 (𝑑 = -𝑏 → (-𝑎 + ((√‘𝐷) · 𝑑)) = (-𝑎 + ((√‘𝐷) · -𝑏)))
5554eqeq2d 2781 . . . . . . . . . . . . . 14 (𝑑 = -𝑏 → (-𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑)) ↔ -𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏))))
56 oveq1 6803 . . . . . . . . . . . . . . . . 17 (𝑑 = -𝑏 → (𝑑↑2) = (-𝑏↑2))
5756oveq2d 6812 . . . . . . . . . . . . . . . 16 (𝑑 = -𝑏 → (𝐷 · (𝑑↑2)) = (𝐷 · (-𝑏↑2)))
5857oveq2d 6812 . . . . . . . . . . . . . . 15 (𝑑 = -𝑏 → ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = ((-𝑎↑2) − (𝐷 · (-𝑏↑2))))
5958eqeq1d 2773 . . . . . . . . . . . . . 14 (𝑑 = -𝑏 → (((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1 ↔ ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1))
6055, 59anbi12d 616 . . . . . . . . . . . . 13 (𝑑 = -𝑏 → ((-𝐴 = (-𝑎 + ((√‘𝐷) · 𝑑)) ∧ ((-𝑎↑2) − (𝐷 · (𝑑↑2))) = 1) ↔ (-𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)))
6152, 60rspc2ev 3474 . . . . . . . . . . . 12 ((-𝑎 ∈ ℕ0 ∧ -𝑏 ∈ ℤ ∧ (-𝐴 = (-𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((-𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))
6219, 21, 38, 46, 61syl112anc 1480 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))
63 elpell14qr 37939 . . . . . . . . . . . 12 (𝐷 ∈ (ℕ ∖ ◻NN) → (-𝐴 ∈ (Pell14QR‘𝐷) ↔ (-𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
6463ad5antr 716 . . . . . . . . . . 11 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝐴 ∈ (Pell14QR‘𝐷) ↔ (-𝐴 ∈ ℝ ∧ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (-𝐴 = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
6518, 62, 64mpbir2and 692 . . . . . . . . . 10 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝐴 ∈ (Pell14QR‘𝐷))
6665olcd 863 . . . . . . . . 9 ((((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))
6766ex 397 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
6867rexlimdva 3179 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) ∧ -𝑎 ∈ ℕ0) → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
6968ex 397 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (-𝑎 ∈ ℕ0 → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))))
70 elznn0 11599 . . . . . . . 8 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0)))
7170simprbi 484 . . . . . . 7 (𝑎 ∈ ℤ → (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0))
7271adantl 467 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (𝑎 ∈ ℕ0 ∨ -𝑎 ∈ ℕ0))
7316, 69, 72mpjaod 849 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
7473rexlimdva 3179 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
7574expimpd 441 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
761, 75sylbid 230 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))))
7776imp 393 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  wrex 3062  cdif 3720  cfv 6030  (class class class)co 6796  cc 10140  cr 10141  1c1 10143   + caddc 10145   · cmul 10147  cmin 10472  -cneg 10473  cn 11226  2c2 11276  0cn0 11499  cz 11584  cexp 13067  csqrt 14181  NNcsquarenn 37926  Pell1234QRcpell1234qr 37928  Pell14QRcpell14qr 37929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-pell14qr 37933  df-pell1234qr 37934
This theorem is referenced by:  elpell14qr2  37952
  Copyright terms: Public domain W3C validator