![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano2cn | Structured version Visualization version GIF version |
Description: A theorem for complex numbers analogous the second Peano postulate peano2nn 11234. (Contributed by NM, 17-Aug-2005.) |
Ref | Expression |
---|---|
peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10196 | . 2 ⊢ 1 ∈ ℂ | |
2 | addcl 10220 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
3 | 1, 2 | mpan2 671 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 (class class class)co 6793 ℂcc 10136 1c1 10139 + caddc 10141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-1cn 10196 ax-addcl 10198 |
This theorem depends on definitions: df-bi 197 df-an 383 |
This theorem is referenced by: xp1d2m1eqxm1d2 11488 nneo 11663 zeo 11665 zeo2 11666 zesq 13194 facndiv 13279 faclbnd 13281 faclbnd6 13290 iseralt 14623 bcxmas 14774 trireciplem 14801 fallfacfwd 14973 bpolydiflem 14991 fsumcube 14997 odd2np1 15273 srgbinomlem3 18750 srgbinomlem4 18751 pcoass 23043 dvfsumabs 24006 ply1divex 24116 qaa 24298 aaliou3lem2 24318 abssinper 24491 advlogexp 24622 atantayl2 24886 basellem3 25030 basellem8 25035 lgseisenlem1 25321 lgsquadlem1 25326 pntrsumo1 25475 crctcshwlkn0lem6 26943 clwlkclwwlklem3 27151 fwddifnp1 32609 ltflcei 33730 itg2addnclem3 33795 pell14qrgapw 37966 binomcxplemrat 39075 sumnnodd 40380 dirkertrigeqlem1 40832 dirkertrigeqlem3 40834 dirkertrigeq 40835 fourierswlem 40964 fmtnorec4 41989 lighneallem4b 42054 |
Copyright terms: Public domain | W3C validator |