![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcrec | Structured version Visualization version GIF version |
Description: Prime power of a reciprocal. (Contributed by Mario Carneiro, 10-Aug-2015.) |
Ref | Expression |
---|---|
pcrec | ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (1 / 𝐴)) = -(𝑃 pCnt 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 11607 | . . . . . 6 ⊢ 1 ∈ ℤ | |
2 | zq 11996 | . . . . . 6 ⊢ (1 ∈ ℤ → 1 ∈ ℚ) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1 ∈ ℚ |
4 | ax-1ne0 10205 | . . . . 5 ⊢ 1 ≠ 0 | |
5 | 3, 4 | pm3.2i 471 | . . . 4 ⊢ (1 ∈ ℚ ∧ 1 ≠ 0) |
6 | pcqdiv 15775 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (1 ∈ ℚ ∧ 1 ≠ 0) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (1 / 𝐴)) = ((𝑃 pCnt 1) − (𝑃 pCnt 𝐴))) | |
7 | 5, 6 | mp3an2 1558 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (1 / 𝐴)) = ((𝑃 pCnt 1) − (𝑃 pCnt 𝐴))) |
8 | pc1 15773 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) | |
9 | 8 | adantr 473 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 1) = 0) |
10 | 9 | oveq1d 6806 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → ((𝑃 pCnt 1) − (𝑃 pCnt 𝐴)) = (0 − (𝑃 pCnt 𝐴))) |
11 | 7, 10 | eqtrd 2803 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (1 / 𝐴)) = (0 − (𝑃 pCnt 𝐴))) |
12 | df-neg 10469 | . 2 ⊢ -(𝑃 pCnt 𝐴) = (0 − (𝑃 pCnt 𝐴)) | |
13 | 11, 12 | syl6eqr 2821 | 1 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (1 / 𝐴)) = -(𝑃 pCnt 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1629 ∈ wcel 2143 ≠ wne 2941 (class class class)co 6791 0cc0 10136 1c1 10137 − cmin 10466 -cneg 10467 / cdiv 10884 ℤcz 11577 ℚcq 11990 ℙcprime 15598 pCnt cpc 15754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 ax-pre-sup 10214 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-nel 3045 df-ral 3064 df-rex 3065 df-reu 3066 df-rmo 3067 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-pss 3736 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4572 df-iun 4653 df-br 4784 df-opab 4844 df-mpt 4861 df-tr 4884 df-id 5156 df-eprel 5161 df-po 5169 df-so 5170 df-fr 5207 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-1st 7313 df-2nd 7314 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-2o 7712 df-er 7894 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-sup 8502 df-inf 8503 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-div 10885 df-nn 11221 df-2 11279 df-3 11280 df-n0 11493 df-z 11578 df-uz 11888 df-q 11991 df-rp 12035 df-fl 12800 df-mod 12876 df-seq 13009 df-exp 13068 df-cj 14050 df-re 14051 df-im 14052 df-sqrt 14186 df-abs 14187 df-dvds 15195 df-gcd 15431 df-prm 15599 df-pc 15755 |
This theorem is referenced by: pcexp 15777 |
Copyright terms: Public domain | W3C validator |