MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcqcl Structured version   Visualization version   GIF version

Theorem pcqcl 15608
Description: Closure of the general prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcqcl ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ)

Proof of Theorem pcqcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 809 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℚ)
2 elq 11828 . . 3 (𝑁 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦))
31, 2sylib 208 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦))
4 nncn 11066 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
5 nnne0 11091 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
64, 5div0d 10838 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (0 / 𝑦) = 0)
76ad2antll 765 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (0 / 𝑦) = 0)
8 oveq1 6697 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦))
98eqeq1d 2653 . . . . . . . . . 10 (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0))
107, 9syl5ibrcom 237 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 = 0 → (𝑥 / 𝑦) = 0))
1110necon3d 2844 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ((𝑥 / 𝑦) ≠ 0 → 𝑥 ≠ 0))
12 an32 856 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) ↔ ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ))
13 pcdiv 15604 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
14 pczcl 15600 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℕ0)
1514nn0zd 11518 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℤ)
16153adant3 1101 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt 𝑥) ∈ ℤ)
17 nnz 11437 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
1817, 5jca 553 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0))
19 pczcl 15600 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℕ0)
2019nn0zd 11518 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
2118, 20sylan2 490 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt 𝑦) ∈ ℤ)
22213adant2 1100 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt 𝑦) ∈ ℤ)
2316, 22zsubcld 11525 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)) ∈ ℤ)
2413, 23eqeltrd 2730 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)
25243expb 1285 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)
2612, 25sylan2b 491 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0)) → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)
2726expr 642 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 ≠ 0 → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ))
2811, 27syld 47 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ((𝑥 / 𝑦) ≠ 0 → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ))
29 neeq1 2885 . . . . . . . 8 (𝑁 = (𝑥 / 𝑦) → (𝑁 ≠ 0 ↔ (𝑥 / 𝑦) ≠ 0))
30 oveq2 6698 . . . . . . . . 9 (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) = (𝑃 pCnt (𝑥 / 𝑦)))
3130eleq1d 2715 . . . . . . . 8 (𝑁 = (𝑥 / 𝑦) → ((𝑃 pCnt 𝑁) ∈ ℤ ↔ (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ))
3229, 31imbi12d 333 . . . . . . 7 (𝑁 = (𝑥 / 𝑦) → ((𝑁 ≠ 0 → (𝑃 pCnt 𝑁) ∈ ℤ) ↔ ((𝑥 / 𝑦) ≠ 0 → (𝑃 pCnt (𝑥 / 𝑦)) ∈ ℤ)))
3328, 32syl5ibrcom 237 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑁 = (𝑥 / 𝑦) → (𝑁 ≠ 0 → (𝑃 pCnt 𝑁) ∈ ℤ)))
3433com23 86 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑁 ≠ 0 → (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ)))
3534impancom 455 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ)))
3635adantrl 752 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ)))
3736rexlimdvv 3066 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) → (𝑃 pCnt 𝑁) ∈ ℤ))
383, 37mpd 15 1 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942  (class class class)co 6690  0cc0 9974  cmin 10304   / cdiv 10722  cn 11058  cz 11415  cq 11826  cprime 15432   pCnt cpc 15588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589
This theorem is referenced by:  pcqdiv  15609  pcexp  15611  pcxcl  15612  pcadd  15640  qexpz  15652  expnprm  15653  padicabv  25364  padicabvf  25365  padicabvcxp  25366
  Copyright terms: Public domain W3C validator