MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoval2 Structured version   Visualization version   GIF version

Theorem pcoval2 23034
Description: Evaluate the concatenation of two paths on the second half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
pcoval2.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
Assertion
Ref Expression
pcoval2 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐺‘((2 · 𝑋) − 1)))

Proof of Theorem pcoval2
StepHypRef Expression
1 0re 10241 . . . . 5 0 ∈ ℝ
2 1re 10240 . . . . 5 1 ∈ ℝ
3 halfre 11447 . . . . . 6 (1 / 2) ∈ ℝ
4 halfgt0 11449 . . . . . 6 0 < (1 / 2)
51, 3, 4ltleii 10361 . . . . 5 0 ≤ (1 / 2)
6 1le1 10856 . . . . 5 1 ≤ 1
7 iccss 12445 . . . . 5 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (1 / 2) ∧ 1 ≤ 1)) → ((1 / 2)[,]1) ⊆ (0[,]1))
81, 2, 5, 6, 7mp4an 665 . . . 4 ((1 / 2)[,]1) ⊆ (0[,]1)
98sseli 3746 . . 3 (𝑋 ∈ ((1 / 2)[,]1) → 𝑋 ∈ (0[,]1))
10 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
11 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
1210, 11pcovalg 23030 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
139, 12sylan2 572 . 2 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
14 pcoval2.4 . . . . . . . 8 (𝜑 → (𝐹‘1) = (𝐺‘0))
1514adantr 466 . . . . . . 7 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘1) = (𝐺‘0))
16 simprr 748 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 ≤ (1 / 2))
173, 2elicc2i 12443 . . . . . . . . . . . . 13 (𝑋 ∈ ((1 / 2)[,]1) ↔ (𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1))
1817simp2bi 1139 . . . . . . . . . . . 12 (𝑋 ∈ ((1 / 2)[,]1) → (1 / 2) ≤ 𝑋)
1918ad2antrl 699 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (1 / 2) ≤ 𝑋)
2017simp1bi 1138 . . . . . . . . . . . . 13 (𝑋 ∈ ((1 / 2)[,]1) → 𝑋 ∈ ℝ)
2120ad2antrl 699 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 ∈ ℝ)
22 letri3 10324 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑋 = (1 / 2) ↔ (𝑋 ≤ (1 / 2) ∧ (1 / 2) ≤ 𝑋)))
2321, 3, 22sylancl 566 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝑋 = (1 / 2) ↔ (𝑋 ≤ (1 / 2) ∧ (1 / 2) ≤ 𝑋)))
2416, 19, 23mpbir2and 684 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 = (1 / 2))
2524oveq2d 6808 . . . . . . . . 9 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (2 · 𝑋) = (2 · (1 / 2)))
26 2cn 11292 . . . . . . . . . 10 2 ∈ ℂ
27 2ne0 11314 . . . . . . . . . 10 2 ≠ 0
2826, 27recidi 10957 . . . . . . . . 9 (2 · (1 / 2)) = 1
2925, 28syl6eq 2820 . . . . . . . 8 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (2 · 𝑋) = 1)
3029fveq2d 6336 . . . . . . 7 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘(2 · 𝑋)) = (𝐹‘1))
3129oveq1d 6807 . . . . . . . . 9 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → ((2 · 𝑋) − 1) = (1 − 1))
32 1m1e0 11290 . . . . . . . . 9 (1 − 1) = 0
3331, 32syl6eq 2820 . . . . . . . 8 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → ((2 · 𝑋) − 1) = 0)
3433fveq2d 6336 . . . . . . 7 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐺‘((2 · 𝑋) − 1)) = (𝐺‘0))
3515, 30, 343eqtr4d 2814 . . . . . 6 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘(2 · 𝑋)) = (𝐺‘((2 · 𝑋) − 1)))
3635ifeq1d 4241 . . . . 5 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = if(𝑋 ≤ (1 / 2), (𝐺‘((2 · 𝑋) − 1)), (𝐺‘((2 · 𝑋) − 1))))
37 ifid 4262 . . . . 5 if(𝑋 ≤ (1 / 2), (𝐺‘((2 · 𝑋) − 1)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))
3836, 37syl6eq 2820 . . . 4 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))
3938expr 444 . . 3 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → (𝑋 ≤ (1 / 2) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))))
40 iffalse 4232 . . 3 𝑋 ≤ (1 / 2) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))
4139, 40pm2.61d1 172 . 2 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))
4213, 41eqtrd 2804 1 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐺‘((2 · 𝑋) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wss 3721  ifcif 4223   class class class wbr 4784  cfv 6031  (class class class)co 6792  cr 10136  0cc0 10137  1c1 10138   · cmul 10142  cle 10276  cmin 10467   / cdiv 10885  2c2 11271  [,]cicc 12382   Cn ccn 21248  IIcii 22897  *𝑝cpco 23018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-2 11280  df-icc 12386  df-top 20918  df-topon 20935  df-cn 21251  df-pco 23023
This theorem is referenced by:  pcoass  23042  pcorevlem  23044
  Copyright terms: Public domain W3C validator