MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcohtpy Structured version   Visualization version   GIF version

Theorem pcohtpy 23012
Description: Homotopy invariance of path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
pcohtpy.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
pcohtpy.5 (𝜑𝐹( ≃ph𝐽)𝐻)
pcohtpy.6 (𝜑𝐺( ≃ph𝐽)𝐾)
Assertion
Ref Expression
pcohtpy (𝜑 → (𝐹(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝐻(*𝑝𝐽)𝐾))

Proof of Theorem pcohtpy
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcohtpy.5 . . . . 5 (𝜑𝐹( ≃ph𝐽)𝐻)
2 isphtpc 22986 . . . . 5 (𝐹( ≃ph𝐽)𝐻 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
31, 2sylib 208 . . . 4 (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
43simp1d 1136 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
5 pcohtpy.6 . . . . 5 (𝜑𝐺( ≃ph𝐽)𝐾)
6 isphtpc 22986 . . . . 5 (𝐺( ≃ph𝐽)𝐾 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
75, 6sylib 208 . . . 4 (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
87simp1d 1136 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
9 pcohtpy.4 . . 3 (𝜑 → (𝐹‘1) = (𝐺‘0))
104, 8, 9pcocn 23009 . 2 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
113simp2d 1137 . . 3 (𝜑𝐻 ∈ (II Cn 𝐽))
127simp2d 1137 . . 3 (𝜑𝐾 ∈ (II Cn 𝐽))
13 phtpc01 22988 . . . . . 6 (𝐹( ≃ph𝐽)𝐻 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1)))
141, 13syl 17 . . . . 5 (𝜑 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1)))
1514simprd 482 . . . 4 (𝜑 → (𝐹‘1) = (𝐻‘1))
16 phtpc01 22988 . . . . . 6 (𝐺( ≃ph𝐽)𝐾 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1)))
175, 16syl 17 . . . . 5 (𝜑 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1)))
1817simpld 477 . . . 4 (𝜑 → (𝐺‘0) = (𝐾‘0))
199, 15, 183eqtr3d 2794 . . 3 (𝜑 → (𝐻‘1) = (𝐾‘0))
2011, 12, 19pcocn 23009 . 2 (𝜑 → (𝐻(*𝑝𝐽)𝐾) ∈ (II Cn 𝐽))
213simp3d 1138 . . . . 5 (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅)
22 n0 4066 . . . . 5 ((𝐹(PHtpy‘𝐽)𝐻) ≠ ∅ ↔ ∃𝑚 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻))
2321, 22sylib 208 . . . 4 (𝜑 → ∃𝑚 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻))
247simp3d 1138 . . . . 5 (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅)
25 n0 4066 . . . . 5 ((𝐺(PHtpy‘𝐽)𝐾) ≠ ∅ ↔ ∃𝑛 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))
2624, 25sylib 208 . . . 4 (𝜑 → ∃𝑛 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))
27 eeanv 2319 . . . 4 (∃𝑚𝑛(𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) ↔ (∃𝑚 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ ∃𝑛 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)))
2823, 26, 27sylanbrc 701 . . 3 (𝜑 → ∃𝑚𝑛(𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)))
299adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → (𝐹‘1) = (𝐺‘0))
301adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝐹( ≃ph𝐽)𝐻)
315adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝐺( ≃ph𝐽)𝐾)
32 eqid 2752 . . . . . . 7 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦))) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦)))
33 simprl 811 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻))
34 simprr 813 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))
3529, 30, 31, 32, 33, 34pcohtpylem 23011 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦))) ∈ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)))
36 ne0i 4056 . . . . . 6 ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦))) ∈ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) → ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅)
3735, 36syl 17 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅)
3837ex 449 . . . 4 (𝜑 → ((𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) → ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅))
3938exlimdvv 2003 . . 3 (𝜑 → (∃𝑚𝑛(𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) → ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅))
4028, 39mpd 15 . 2 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅)
41 isphtpc 22986 . 2 ((𝐹(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝐻(*𝑝𝐽)𝐾) ↔ ((𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽) ∧ (𝐻(*𝑝𝐽)𝐾) ∈ (II Cn 𝐽) ∧ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅))
4210, 20, 40, 41syl3anbrc 1426 1 (𝜑 → (𝐹(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝐻(*𝑝𝐽)𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1624  wex 1845  wcel 2131  wne 2924  c0 4050  ifcif 4222   class class class wbr 4796  cfv 6041  (class class class)co 6805  cmpt2 6807  0cc0 10120  1c1 10121   · cmul 10125  cle 10259  cmin 10450   / cdiv 10868  2c2 11254  [,]cicc 12363   Cn ccn 21222  IIcii 22871  PHtpycphtpy 22960  phcphtpc 22961  *𝑝cpco 22992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-ioo 12364  df-icc 12367  df-fz 12512  df-fzo 12652  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-hom 16160  df-cco 16161  df-rest 16277  df-topn 16278  df-0g 16296  df-gsum 16297  df-topgen 16298  df-pt 16299  df-prds 16302  df-xrs 16356  df-qtop 16361  df-imas 16362  df-xps 16364  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-submnd 17529  df-mulg 17734  df-cntz 17942  df-cmn 18387  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-mopn 19936  df-cnfld 19941  df-top 20893  df-topon 20910  df-topsp 20931  df-bases 20944  df-cld 21017  df-cn 21225  df-cnp 21226  df-tx 21559  df-hmeo 21752  df-xms 22318  df-ms 22319  df-tms 22320  df-ii 22873  df-htpy 22962  df-phtpy 22963  df-phtpc 22984  df-pco 22997
This theorem is referenced by:  pcophtb  23021  pi1cpbl  23036  pi1xfrf  23045  pi1xfr  23047  pi1xfrcnvlem  23048
  Copyright terms: Public domain W3C validator