MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcneg Structured version   Visualization version   GIF version

Theorem pcneg 15784
Description: The prime count of a negative number. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
pcneg ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴))

Proof of Theorem pcneg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 11992 . . 3 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 zcn 11583 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
32ad2antrl 699 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥 ∈ ℂ)
4 nncn 11229 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
54ad2antll 700 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ ℂ)
6 nnne0 11254 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
76ad2antll 700 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ≠ 0)
83, 5, 7divnegd 11015 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → -(𝑥 / 𝑦) = (-𝑥 / 𝑦))
98oveq2d 6808 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt -(𝑥 / 𝑦)) = (𝑃 pCnt (-𝑥 / 𝑦)))
10 neg0 10528 . . . . . . . . . 10 -0 = 0
11 simpr 471 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → 𝑥 = 0)
1211negeqd 10476 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → -𝑥 = -0)
1310, 12, 113eqtr4a 2830 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → -𝑥 = 𝑥)
1413oveq1d 6807 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → (-𝑥 / 𝑦) = (𝑥 / 𝑦))
1514oveq2d 6808 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → (𝑃 pCnt (-𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦)))
16 simpll 742 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑃 ∈ ℙ)
17 simplrl 754 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑥 ∈ ℤ)
1817znegcld 11685 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → -𝑥 ∈ ℤ)
19 simpr 471 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑥 ≠ 0)
202negne0bd 10586 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (𝑥 ≠ 0 ↔ -𝑥 ≠ 0))
2117, 20syl 17 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑥 ≠ 0 ↔ -𝑥 ≠ 0))
2219, 21mpbid 222 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → -𝑥 ≠ 0)
23 simplrr 755 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑦 ∈ ℕ)
24 pcdiv 15763 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (-𝑥 ∈ ℤ ∧ -𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (-𝑥 / 𝑦)) = ((𝑃 pCnt -𝑥) − (𝑃 pCnt 𝑦)))
2516, 18, 22, 23, 24syl121anc 1480 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt (-𝑥 / 𝑦)) = ((𝑃 pCnt -𝑥) − (𝑃 pCnt 𝑦)))
26 pcdiv 15763 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
2716, 17, 19, 23, 26syl121anc 1480 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
28 eqid 2770 . . . . . . . . . . . . 13 sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < )
2928pczpre 15758 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (-𝑥 ∈ ℤ ∧ -𝑥 ≠ 0)) → (𝑃 pCnt -𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ))
3016, 18, 22, 29syl12anc 1473 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt -𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ))
31 eqid 2770 . . . . . . . . . . . . . 14 sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ 𝑥}, ℝ, < ) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ 𝑥}, ℝ, < )
3231pczpre 15758 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ 𝑥}, ℝ, < ))
33 prmz 15595 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
34 zexpcl 13081 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑃𝑦) ∈ ℤ)
3533, 34sylan 561 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ0) → (𝑃𝑦) ∈ ℤ)
36 simpl 468 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → 𝑥 ∈ ℤ)
37 dvdsnegb 15207 . . . . . . . . . . . . . . . . 17 (((𝑃𝑦) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑃𝑦) ∥ 𝑥 ↔ (𝑃𝑦) ∥ -𝑥))
3835, 36, 37syl2an 575 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ0) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → ((𝑃𝑦) ∥ 𝑥 ↔ (𝑃𝑦) ∥ -𝑥))
3938an32s 623 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑃𝑦) ∥ 𝑥 ↔ (𝑃𝑦) ∥ -𝑥))
4039rabbidva 3337 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → {𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ 𝑥} = {𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥})
4140supeq1d 8507 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ 𝑥}, ℝ, < ) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ))
4232, 41eqtrd 2804 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ))
4316, 17, 19, 42syl12anc 1473 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt 𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃𝑦) ∥ -𝑥}, ℝ, < ))
4430, 43eqtr4d 2807 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt -𝑥) = (𝑃 pCnt 𝑥))
4544oveq1d 6807 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → ((𝑃 pCnt -𝑥) − (𝑃 pCnt 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦)))
4627, 45eqtr4d 2807 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt -𝑥) − (𝑃 pCnt 𝑦)))
4725, 46eqtr4d 2807 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt (-𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦)))
4815, 47pm2.61dane 3029 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt (-𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦)))
499, 48eqtrd 2804 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt -(𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦)))
50 negeq 10474 . . . . . . 7 (𝐴 = (𝑥 / 𝑦) → -𝐴 = -(𝑥 / 𝑦))
5150oveq2d 6808 . . . . . 6 (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt -𝐴) = (𝑃 pCnt -(𝑥 / 𝑦)))
52 oveq2 6800 . . . . . 6 (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝑥 / 𝑦)))
5351, 52eqeq12d 2785 . . . . 5 (𝐴 = (𝑥 / 𝑦) → ((𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴) ↔ (𝑃 pCnt -(𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦))))
5449, 53syl5ibrcom 237 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴)))
5554rexlimdvva 3185 . . 3 (𝑃 ∈ ℙ → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴)))
561, 55syl5bi 232 . 2 (𝑃 ∈ ℙ → (𝐴 ∈ ℚ → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴)))
5756imp 393 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wne 2942  wrex 3061  {crab 3064   class class class wbr 4784  (class class class)co 6792  supcsup 8501  cc 10135  cr 10136  0cc0 10137   < clt 10275  cmin 10467  -cneg 10468   / cdiv 10885  cn 11221  0cn0 11493  cz 11578  cq 11990  cexp 13066  cdvds 15188  cprime 15591   pCnt cpc 15747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-q 11991  df-rp 12035  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-dvds 15189  df-gcd 15424  df-prm 15592  df-pc 15748
This theorem is referenced by:  pcabs  15785  pcadd2  15800  lgsneg  25266
  Copyright terms: Public domain W3C validator