MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcmptdvds Structured version   Visualization version   GIF version

Theorem pcmptdvds 15800
Description: The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
pcmpt.3 (𝜑𝑁 ∈ ℕ)
pcmptdvds.3 (𝜑𝑀 ∈ (ℤ𝑁))
Assertion
Ref Expression
pcmptdvds (𝜑 → (seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀))

Proof of Theorem pcmptdvds
Dummy variables 𝑚 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.2 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
2 nfv 1992 . . . . . . . . . 10 𝑚 𝐴 ∈ ℕ0
3 nfcsb1v 3690 . . . . . . . . . . 11 𝑛𝑚 / 𝑛𝐴
43nfel1 2917 . . . . . . . . . 10 𝑛𝑚 / 𝑛𝐴 ∈ ℕ0
5 csbeq1a 3683 . . . . . . . . . . 11 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
65eleq1d 2824 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴 ∈ ℕ0𝑚 / 𝑛𝐴 ∈ ℕ0))
72, 4, 6cbvral 3306 . . . . . . . . 9 (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0 ↔ ∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0)
81, 7sylib 208 . . . . . . . 8 (𝜑 → ∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0)
9 csbeq1 3677 . . . . . . . . . 10 (𝑚 = 𝑝𝑚 / 𝑛𝐴 = 𝑝 / 𝑛𝐴)
109eleq1d 2824 . . . . . . . . 9 (𝑚 = 𝑝 → (𝑚 / 𝑛𝐴 ∈ ℕ0𝑝 / 𝑛𝐴 ∈ ℕ0))
1110rspcv 3445 . . . . . . . 8 (𝑝 ∈ ℙ → (∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0𝑝 / 𝑛𝐴 ∈ ℕ0))
128, 11mpan9 487 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑝 / 𝑛𝐴 ∈ ℕ0)
1312nn0ge0d 11546 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 0 ≤ 𝑝 / 𝑛𝐴)
14 0le0 11302 . . . . . 6 0 ≤ 0
15 breq2 4808 . . . . . . 7 (𝑝 / 𝑛𝐴 = if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0) → (0 ≤ 𝑝 / 𝑛𝐴 ↔ 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0)))
16 breq2 4808 . . . . . . 7 (0 = if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0) → (0 ≤ 0 ↔ 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0)))
1715, 16ifboth 4268 . . . . . 6 ((0 ≤ 𝑝 / 𝑛𝐴 ∧ 0 ≤ 0) → 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0))
1813, 14, 17sylancl 697 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0))
19 pcmpt.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
20 nfcv 2902 . . . . . . . 8 𝑚if(𝑛 ∈ ℙ, (𝑛𝐴), 1)
21 nfv 1992 . . . . . . . . 9 𝑛 𝑚 ∈ ℙ
22 nfcv 2902 . . . . . . . . . 10 𝑛𝑚
23 nfcv 2902 . . . . . . . . . 10 𝑛
2422, 23, 3nfov 6839 . . . . . . . . 9 𝑛(𝑚𝑚 / 𝑛𝐴)
25 nfcv 2902 . . . . . . . . 9 𝑛1
2621, 24, 25nfif 4259 . . . . . . . 8 𝑛if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1)
27 eleq1w 2822 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 ∈ ℙ ↔ 𝑚 ∈ ℙ))
28 id 22 . . . . . . . . . 10 (𝑛 = 𝑚𝑛 = 𝑚)
2928, 5oveq12d 6831 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛𝐴) = (𝑚𝑚 / 𝑛𝐴))
3027, 29ifbieq1d 4253 . . . . . . . 8 (𝑛 = 𝑚 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1))
3120, 26, 30cbvmpt 4901 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1))
3219, 31eqtri 2782 . . . . . 6 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1))
338adantr 472 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0)
34 pcmpt.3 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
3534adantr 472 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
36 simpr 479 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
37 pcmptdvds.3 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑁))
3837adantr 472 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ (ℤ𝑁))
3932, 33, 35, 36, 9, 38pcmpt2 15799 . . . . 5 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0))
4018, 39breqtrrd 4832 . . . 4 ((𝜑𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))))
4140ralrimiva 3104 . . 3 (𝜑 → ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))))
4219, 1pcmptcl 15797 . . . . . . . 8 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
4342simprd 482 . . . . . . 7 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
44 eluznn 11951 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ)
4534, 37, 44syl2anc 696 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
4643, 45ffvelrnd 6523 . . . . . 6 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
4746nnzd 11673 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ)
4843, 34ffvelrnd 6523 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
49 znq 11985 . . . . 5 (((seq1( · , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑁) ∈ ℕ) → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ)
5047, 48, 49syl2anc 696 . . . 4 (𝜑 → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ)
51 pcz 15787 . . . 4 (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ → (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)))))
5250, 51syl 17 . . 3 (𝜑 → (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)))))
5341, 52mpbird 247 . 2 (𝜑 → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ)
5448nnzd 11673 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℤ)
5548nnne0d 11257 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑁) ≠ 0)
56 dvdsval2 15185 . . 3 (((seq1( · , 𝐹)‘𝑁) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑁) ≠ 0 ∧ (seq1( · , 𝐹)‘𝑀) ∈ ℤ) → ((seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀) ↔ ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ))
5754, 55, 47, 56syl3anc 1477 . 2 (𝜑 → ((seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀) ↔ ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ))
5853, 57mpbird 247 1 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  csb 3674  ifcif 4230   class class class wbr 4804  cmpt 4881  wf 6045  cfv 6049  (class class class)co 6813  0cc0 10128  1c1 10129   · cmul 10133  cle 10267   / cdiv 10876  cn 11212  0cn0 11484  cz 11569  cuz 11879  cq 11981  seqcseq 12995  cexp 13054  cdvds 15182  cprime 15587   pCnt cpc 15743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-fz 12520  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-dvds 15183  df-gcd 15419  df-prm 15588  df-pc 15744
This theorem is referenced by:  bposlem6  25213
  Copyright terms: Public domain W3C validator