Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pcmplfinf Structured version   Visualization version   GIF version

Theorem pcmplfinf 30258
 Description: Given a paracompact topology 𝐽 and an open cover 𝑈, there exists an open refinement ran 𝑓 that is locally finite, using the same index as the original cover 𝑈. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Hypothesis
Ref Expression
pcmplfin.x 𝑋 = 𝐽
Assertion
Ref Expression
pcmplfinf ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
Distinct variable groups:   𝑓,𝐽   𝑈,𝑓   𝑓,𝑋

Proof of Theorem pcmplfinf
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 pcmplfin.x . . 3 𝑋 = 𝐽
2 simpll2 1257 . . 3 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑈𝐽)
3 simpll3 1259 . . 3 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑋 = 𝑈)
4 elpwi 4312 . . . 4 (𝑣 ∈ 𝒫 𝐽𝑣𝐽)
54ad2antlr 765 . . 3 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑣𝐽)
6 simprr 813 . . 3 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑣Ref𝑈)
7 simprl 811 . . 3 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → 𝑣 ∈ (LocFin‘𝐽))
81, 2, 3, 5, 6, 7locfinref 30238 . 2 ((((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) ∧ 𝑣 ∈ 𝒫 𝐽) ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
91pcmplfin 30257 . 2 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))
108, 9r19.29a 3216 1 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632  ∃wex 1853   ∈ wcel 2139   ⊆ wss 3715  𝒫 cpw 4302  ∪ cuni 4588   class class class wbr 4804  ran crn 5267  ⟶wf 6045  ‘cfv 6049  Refcref 21527  LocFinclocfin 21529  Paracompcpcmp 30252 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-reg 8664  ax-inf2 8713  ax-ac2 9497 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-fin 8127  df-r1 8802  df-rank 8803  df-card 8975  df-ac 9149  df-top 20921  df-topon 20938  df-ref 21530  df-locfin 21532  df-cref 30240  df-pcmp 30253 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator