MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pclogsum Structured version   Visualization version   GIF version

Theorem pclogsum 24985
Description: The logarithmic analogue of pcprod 15646. The sum of the logarithms of the primes dividing 𝐴 multiplied by their powers yields the logarithm of 𝐴. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
pclogsum (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)) = (log‘𝐴))
Distinct variable group:   𝐴,𝑝

Proof of Theorem pclogsum
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3829 . . . . . 6 (𝑝 ∈ ((1...𝐴) ∩ ℙ) ↔ (𝑝 ∈ (1...𝐴) ∧ 𝑝 ∈ ℙ))
21baib 964 . . . . 5 (𝑝 ∈ (1...𝐴) → (𝑝 ∈ ((1...𝐴) ∩ ℙ) ↔ 𝑝 ∈ ℙ))
32ifbid 4141 . . . 4 (𝑝 ∈ (1...𝐴) → if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
4 fvif 6242 . . . . 5 (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), (log‘1))
5 log1 24377 . . . . . 6 (log‘1) = 0
6 ifeq2 4124 . . . . . 6 ((log‘1) = 0 → if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), (log‘1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
75, 6ax-mp 5 . . . . 5 if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), (log‘1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0)
84, 7eqtri 2673 . . . 4 (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0)
93, 8syl6eqr 2703 . . 3 (𝑝 ∈ (1...𝐴) → if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
109sumeq2i 14473 . 2 Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = Σ𝑝 ∈ (1...𝐴)(log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
11 inss1 3866 . . . 4 ((1...𝐴) ∩ ℙ) ⊆ (1...𝐴)
12 simpr 476 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ((1...𝐴) ∩ ℙ))
1311, 12sseldi 3634 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ (1...𝐴))
14 elfznn 12408 . . . . . . . . . 10 (𝑝 ∈ (1...𝐴) → 𝑝 ∈ ℕ)
1513, 14syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
16 inss2 3867 . . . . . . . . . . 11 ((1...𝐴) ∩ ℙ) ⊆ ℙ
1716, 12sseldi 3634 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
18 simpl 472 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝐴 ∈ ℕ)
1917, 18pccld 15602 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝 pCnt 𝐴) ∈ ℕ0)
2015, 19nnexpcld 13070 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ)
2120nnrpd 11908 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℝ+)
2221relogcld 24414 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℝ)
2322recnd 10106 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ)
2423ralrimiva 2995 . . . 4 (𝐴 ∈ ℕ → ∀𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ)
25 fzfi 12811 . . . . . 6 (1...𝐴) ∈ Fin
2625olci 405 . . . . 5 ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)
27 sumss2 14501 . . . . 5 (((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ) ∧ ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)) → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
2826, 27mpan2 707 . . . 4 ((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ) → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
2911, 24, 28sylancr 696 . . 3 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
3015nnrpd 11908 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
3119nn0zd 11518 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝 pCnt 𝐴) ∈ ℤ)
32 relogexp 24387 . . . . 5 ((𝑝 ∈ ℝ+ ∧ (𝑝 pCnt 𝐴) ∈ ℤ) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) = ((𝑝 pCnt 𝐴) · (log‘𝑝)))
3330, 31, 32syl2anc 694 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) = ((𝑝 pCnt 𝐴) · (log‘𝑝)))
3433sumeq2dv 14477 . . 3 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)))
3529, 34eqtr3d 2687 . 2 (𝐴 ∈ ℕ → Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)))
3614adantl 481 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → 𝑝 ∈ ℕ)
37 eleq1 2718 . . . . . . . 8 (𝑛 = 𝑝 → (𝑛 ∈ ℙ ↔ 𝑝 ∈ ℙ))
38 id 22 . . . . . . . . 9 (𝑛 = 𝑝𝑛 = 𝑝)
39 oveq1 6697 . . . . . . . . 9 (𝑛 = 𝑝 → (𝑛 pCnt 𝐴) = (𝑝 pCnt 𝐴))
4038, 39oveq12d 6708 . . . . . . . 8 (𝑛 = 𝑝 → (𝑛↑(𝑛 pCnt 𝐴)) = (𝑝↑(𝑝 pCnt 𝐴)))
4137, 40ifbieq1d 4142 . . . . . . 7 (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1) = if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
4241fveq2d 6233 . . . . . 6 (𝑛 = 𝑝 → (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
43 eqid 2651 . . . . . 6 (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))) = (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))
44 fvex 6239 . . . . . 6 (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) ∈ V
4542, 43, 44fvmpt 6321 . . . . 5 (𝑝 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝑝) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
4636, 45syl 17 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝑝) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
47 elnnuz 11762 . . . . 5 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ‘1))
4847biimpi 206 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ‘1))
4936adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
50 simpr 476 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
51 simpll 805 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
5250, 51pccld 15602 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
5349, 52nnexpcld 13070 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ)
54 1nn 11069 . . . . . . . . 9 1 ∈ ℕ
5554a1i 11 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ ¬ 𝑝 ∈ ℙ) → 1 ∈ ℕ)
5653, 55ifclda 4153 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1) ∈ ℕ)
5756nnrpd 11908 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1) ∈ ℝ+)
5857relogcld 24414 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) ∈ ℝ)
5958recnd 10106 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) ∈ ℂ)
6046, 48, 59fsumser 14505 . . 3 (𝐴 ∈ ℕ → Σ𝑝 ∈ (1...𝐴)(log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = (seq1( + , (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))))‘𝐴))
61 rpmulcl 11893 . . . . 5 ((𝑝 ∈ ℝ+𝑚 ∈ ℝ+) → (𝑝 · 𝑚) ∈ ℝ+)
6261adantl 481 . . . 4 ((𝐴 ∈ ℕ ∧ (𝑝 ∈ ℝ+𝑚 ∈ ℝ+)) → (𝑝 · 𝑚) ∈ ℝ+)
63 eqid 2651 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))
64 ovex 6718 . . . . . . . 8 (𝑝↑(𝑝 pCnt 𝐴)) ∈ V
65 1ex 10073 . . . . . . . 8 1 ∈ V
6664, 65ifex 4189 . . . . . . 7 if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1) ∈ V
6741, 63, 66fvmpt 6321 . . . . . 6 (𝑝 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
6836, 67syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
6968, 57eqeltrd 2730 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝) ∈ ℝ+)
70 relogmul 24383 . . . . 5 ((𝑝 ∈ ℝ+𝑚 ∈ ℝ+) → (log‘(𝑝 · 𝑚)) = ((log‘𝑝) + (log‘𝑚)))
7170adantl 481 . . . 4 ((𝐴 ∈ ℕ ∧ (𝑝 ∈ ℝ+𝑚 ∈ ℝ+)) → (log‘(𝑝 · 𝑚)) = ((log‘𝑝) + (log‘𝑚)))
7268fveq2d 6233 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝)) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
7372, 46eqtr4d 2688 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝)) = ((𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝑝))
7462, 69, 48, 71, 73seqhomo 12888 . . 3 (𝐴 ∈ ℕ → (log‘(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝐴)) = (seq1( + , (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))))‘𝐴))
7563pcprod 15646 . . . 4 (𝐴 ∈ ℕ → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝐴) = 𝐴)
7675fveq2d 6233 . . 3 (𝐴 ∈ ℕ → (log‘(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝐴)) = (log‘𝐴))
7760, 74, 763eqtr2d 2691 . 2 (𝐴 ∈ ℕ → Σ𝑝 ∈ (1...𝐴)(log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = (log‘𝐴))
7810, 35, 773eqtr3a 2709 1 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)) = (log‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1523  wcel 2030  wral 2941  cin 3606  wss 3607  ifcif 4119  cmpt 4762  cfv 5926  (class class class)co 6690  Fincfn 7997  cc 9972  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  cn 11058  cz 11415  cuz 11725  +crp 11870  ...cfz 12364  seqcseq 12841  cexp 12900  Σcsu 14460  cprime 15432   pCnt cpc 15588  logclog 24346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348
This theorem is referenced by:  vmasum  24986  chebbnd1lem1  25203
  Copyright terms: Public domain W3C validator