![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcid | Structured version Visualization version GIF version |
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014.) |
Ref | Expression |
---|---|
pcid | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0nn 11554 | . 2 ⊢ (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) | |
2 | pcidlem 15749 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) | |
3 | prmnn 15561 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
4 | 3 | adantr 472 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℕ) |
5 | 4 | nncnd 11199 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℂ) |
6 | simprl 811 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝐴 ∈ ℝ) | |
7 | 6 | recnd 10231 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝐴 ∈ ℂ) |
8 | nnnn0 11462 | . . . . . . 7 ⊢ (-𝐴 ∈ ℕ → -𝐴 ∈ ℕ0) | |
9 | 8 | ad2antll 767 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → -𝐴 ∈ ℕ0) |
10 | expneg2 13034 | . . . . . 6 ⊢ ((𝑃 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → (𝑃↑𝐴) = (1 / (𝑃↑-𝐴))) | |
11 | 5, 7, 9, 10 | syl3anc 1463 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃↑𝐴) = (1 / (𝑃↑-𝐴))) |
12 | 11 | oveq2d 6817 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑𝐴)) = (𝑃 pCnt (1 / (𝑃↑-𝐴)))) |
13 | simpl 474 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℙ) | |
14 | 1zzd 11571 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 1 ∈ ℤ) | |
15 | ax-1ne0 10168 | . . . . . . 7 ⊢ 1 ≠ 0 | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 1 ≠ 0) |
17 | 4, 9 | nnexpcld 13195 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃↑-𝐴) ∈ ℕ) |
18 | pcdiv 15730 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (1 ∈ ℤ ∧ 1 ≠ 0) ∧ (𝑃↑-𝐴) ∈ ℕ) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴)))) | |
19 | 13, 14, 16, 17, 18 | syl121anc 1468 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴)))) |
20 | pc1 15733 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) | |
21 | 20 | adantr 472 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt 1) = 0) |
22 | pcidlem 15749 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ -𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑-𝐴)) = -𝐴) | |
23 | 9, 22 | syldan 488 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑-𝐴)) = -𝐴) |
24 | 21, 23 | oveq12d 6819 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴))) = (0 − -𝐴)) |
25 | df-neg 10432 | . . . . . . 7 ⊢ --𝐴 = (0 − -𝐴) | |
26 | 7 | negnegd 10546 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → --𝐴 = 𝐴) |
27 | 25, 26 | syl5eqr 2796 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (0 − -𝐴) = 𝐴) |
28 | 24, 27 | eqtrd 2782 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴))) = 𝐴) |
29 | 19, 28 | eqtrd 2782 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = 𝐴) |
30 | 12, 29 | eqtrd 2782 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
31 | 2, 30 | jaodan 861 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
32 | 1, 31 | sylan2b 493 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 (class class class)co 6801 ℂcc 10097 ℝcr 10098 0cc0 10099 1c1 10100 − cmin 10429 -cneg 10430 / cdiv 10847 ℕcn 11183 ℕ0cn0 11455 ℤcz 11540 ↑cexp 13025 ℙcprime 15558 pCnt cpc 15714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8501 df-inf 8502 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-n0 11456 df-z 11541 df-uz 11851 df-q 11953 df-rp 11997 df-fl 12758 df-mod 12834 df-seq 12967 df-exp 13026 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 df-dvds 15154 df-gcd 15390 df-prm 15559 df-pc 15715 |
This theorem is referenced by: pcprmpw2 15759 pcaddlem 15765 expnprm 15779 sylow1lem1 18184 pgpfi 18191 ablfaclem3 18657 isppw2 25011 dvdsppwf1o 25082 lgsval2lem 25202 dchrisum0flblem1 25367 ostth3 25497 |
Copyright terms: Public domain | W3C validator |