MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcid Structured version   Visualization version   GIF version

Theorem pcid 15750
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014.)
Assertion
Ref Expression
pcid ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)

Proof of Theorem pcid
StepHypRef Expression
1 elznn0nn 11554 . 2 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)))
2 pcidlem 15749 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
3 prmnn 15561 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
43adantr 472 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℕ)
54nncnd 11199 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℂ)
6 simprl 811 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝐴 ∈ ℝ)
76recnd 10231 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝐴 ∈ ℂ)
8 nnnn0 11462 . . . . . . 7 (-𝐴 ∈ ℕ → -𝐴 ∈ ℕ0)
98ad2antll 767 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → -𝐴 ∈ ℕ0)
10 expneg2 13034 . . . . . 6 ((𝑃 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → (𝑃𝐴) = (1 / (𝑃↑-𝐴)))
115, 7, 9, 10syl3anc 1463 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃𝐴) = (1 / (𝑃↑-𝐴)))
1211oveq2d 6817 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃𝐴)) = (𝑃 pCnt (1 / (𝑃↑-𝐴))))
13 simpl 474 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℙ)
14 1zzd 11571 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 1 ∈ ℤ)
15 ax-1ne0 10168 . . . . . . 7 1 ≠ 0
1615a1i 11 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 1 ≠ 0)
174, 9nnexpcld 13195 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃↑-𝐴) ∈ ℕ)
18 pcdiv 15730 . . . . . 6 ((𝑃 ∈ ℙ ∧ (1 ∈ ℤ ∧ 1 ≠ 0) ∧ (𝑃↑-𝐴) ∈ ℕ) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴))))
1913, 14, 16, 17, 18syl121anc 1468 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴))))
20 pc1 15733 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)
2120adantr 472 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt 1) = 0)
22 pcidlem 15749 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ -𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑-𝐴)) = -𝐴)
239, 22syldan 488 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑-𝐴)) = -𝐴)
2421, 23oveq12d 6819 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴))) = (0 − -𝐴))
25 df-neg 10432 . . . . . . 7 --𝐴 = (0 − -𝐴)
267negnegd 10546 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → --𝐴 = 𝐴)
2725, 26syl5eqr 2796 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (0 − -𝐴) = 𝐴)
2824, 27eqtrd 2782 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴))) = 𝐴)
2919, 28eqtrd 2782 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = 𝐴)
3012, 29eqtrd 2782 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
312, 30jaodan 861 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
321, 31sylan2b 493 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1620  wcel 2127  wne 2920  (class class class)co 6801  cc 10097  cr 10098  0cc0 10099  1c1 10100  cmin 10429  -cneg 10430   / cdiv 10847  cn 11183  0cn0 11455  cz 11540  cexp 13025  cprime 15558   pCnt cpc 15714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8501  df-inf 8502  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-z 11541  df-uz 11851  df-q 11953  df-rp 11997  df-fl 12758  df-mod 12834  df-seq 12967  df-exp 13026  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-dvds 15154  df-gcd 15390  df-prm 15559  df-pc 15715
This theorem is referenced by:  pcprmpw2  15759  pcaddlem  15765  expnprm  15779  sylow1lem1  18184  pgpfi  18191  ablfaclem3  18657  isppw2  25011  dvdsppwf1o  25082  lgsval2lem  25202  dchrisum0flblem1  25367  ostth3  25497
  Copyright terms: Public domain W3C validator