MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcfac Structured version   Visualization version   GIF version

Theorem pcfac 15650
Description: Calculate the prime count of a factorial. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
pcfac ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘))))
Distinct variable groups:   𝑃,𝑘   𝑘,𝑁   𝑘,𝑀

Proof of Theorem pcfac
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6229 . . . . . . . 8 (𝑥 = 0 → (ℤ𝑥) = (ℤ‘0))
2 fveq2 6229 . . . . . . . . . 10 (𝑥 = 0 → (!‘𝑥) = (!‘0))
32oveq2d 6706 . . . . . . . . 9 (𝑥 = 0 → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘0)))
4 oveq1 6697 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥 / (𝑃𝑘)) = (0 / (𝑃𝑘)))
54fveq2d 6233 . . . . . . . . . 10 (𝑥 = 0 → (⌊‘(𝑥 / (𝑃𝑘))) = (⌊‘(0 / (𝑃𝑘))))
65sumeq2sdv 14479 . . . . . . . . 9 (𝑥 = 0 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘))))
73, 6eqeq12d 2666 . . . . . . . 8 (𝑥 = 0 → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ (𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘)))))
81, 7raleqbidv 3182 . . . . . . 7 (𝑥 = 0 → (∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ ∀𝑚 ∈ (ℤ‘0)(𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘)))))
98imbi2d 329 . . . . . 6 (𝑥 = 0 → ((𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ‘0)(𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘))))))
10 fveq2 6229 . . . . . . . 8 (𝑥 = 𝑛 → (ℤ𝑥) = (ℤ𝑛))
11 fveq2 6229 . . . . . . . . . 10 (𝑥 = 𝑛 → (!‘𝑥) = (!‘𝑛))
1211oveq2d 6706 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘𝑛)))
13 oveq1 6697 . . . . . . . . . . 11 (𝑥 = 𝑛 → (𝑥 / (𝑃𝑘)) = (𝑛 / (𝑃𝑘)))
1413fveq2d 6233 . . . . . . . . . 10 (𝑥 = 𝑛 → (⌊‘(𝑥 / (𝑃𝑘))) = (⌊‘(𝑛 / (𝑃𝑘))))
1514sumeq2sdv 14479 . . . . . . . . 9 (𝑥 = 𝑛 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))))
1612, 15eqeq12d 2666 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ (𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))))
1710, 16raleqbidv 3182 . . . . . . 7 (𝑥 = 𝑛 → (∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ ∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))))
1817imbi2d 329 . . . . . 6 (𝑥 = 𝑛 → ((𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))))))
19 fveq2 6229 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (ℤ𝑥) = (ℤ‘(𝑛 + 1)))
20 fveq2 6229 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (!‘𝑥) = (!‘(𝑛 + 1)))
2120oveq2d 6706 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘(𝑛 + 1))))
22 oveq1 6697 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝑥 / (𝑃𝑘)) = ((𝑛 + 1) / (𝑃𝑘)))
2322fveq2d 6233 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (⌊‘(𝑥 / (𝑃𝑘))) = (⌊‘((𝑛 + 1) / (𝑃𝑘))))
2423sumeq2sdv 14479 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))))
2521, 24eqeq12d 2666 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ (𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
2619, 25raleqbidv 3182 . . . . . . 7 (𝑥 = (𝑛 + 1) → (∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
2726imbi2d 329 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))))))
28 fveq2 6229 . . . . . . . 8 (𝑥 = 𝑁 → (ℤ𝑥) = (ℤ𝑁))
29 fveq2 6229 . . . . . . . . . 10 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
3029oveq2d 6706 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘𝑁)))
31 oveq1 6697 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝑥 / (𝑃𝑘)) = (𝑁 / (𝑃𝑘)))
3231fveq2d 6233 . . . . . . . . . 10 (𝑥 = 𝑁 → (⌊‘(𝑥 / (𝑃𝑘))) = (⌊‘(𝑁 / (𝑃𝑘))))
3332sumeq2sdv 14479 . . . . . . . . 9 (𝑥 = 𝑁 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))))
3430, 33eqeq12d 2666 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘)))))
3528, 34raleqbidv 3182 . . . . . . 7 (𝑥 = 𝑁 → (∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ ∀𝑚 ∈ (ℤ𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘)))))
3635imbi2d 329 . . . . . 6 (𝑥 = 𝑁 → ((𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))))))
37 fzfid 12812 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → (1...𝑚) ∈ Fin)
38 sumz 14497 . . . . . . . . . 10 (((1...𝑚) ⊆ (ℤ‘1) ∨ (1...𝑚) ∈ Fin) → Σ𝑘 ∈ (1...𝑚)0 = 0)
3938olcs 409 . . . . . . . . 9 ((1...𝑚) ∈ Fin → Σ𝑘 ∈ (1...𝑚)0 = 0)
4037, 39syl 17 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → Σ𝑘 ∈ (1...𝑚)0 = 0)
41 0nn0 11345 . . . . . . . . . . 11 0 ∈ ℕ0
4241a1i 11 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) ∧ 𝑘 ∈ (1...𝑚)) → 0 ∈ ℕ0)
43 elfznn 12408 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑚) → 𝑘 ∈ ℕ)
4443nnnn0d 11389 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑚) → 𝑘 ∈ ℕ0)
45 nn0uz 11760 . . . . . . . . . . . 12 0 = (ℤ‘0)
4644, 45syl6eleq 2740 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑚) → 𝑘 ∈ (ℤ‘0))
4746adantl 481 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) ∧ 𝑘 ∈ (1...𝑚)) → 𝑘 ∈ (ℤ‘0))
48 simpll 805 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) ∧ 𝑘 ∈ (1...𝑚)) → 𝑃 ∈ ℙ)
49 pcfaclem 15649 . . . . . . . . . 10 ((0 ∈ ℕ0𝑘 ∈ (ℤ‘0) ∧ 𝑃 ∈ ℙ) → (⌊‘(0 / (𝑃𝑘))) = 0)
5042, 47, 48, 49syl3anc 1366 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘(0 / (𝑃𝑘))) = 0)
5150sumeq2dv 14477 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑚)0)
52 fac0 13103 . . . . . . . . . . 11 (!‘0) = 1
5352oveq2i 6701 . . . . . . . . . 10 (𝑃 pCnt (!‘0)) = (𝑃 pCnt 1)
54 pc1 15607 . . . . . . . . . 10 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)
5553, 54syl5eq 2697 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 pCnt (!‘0)) = 0)
5655adantr 480 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → (𝑃 pCnt (!‘0)) = 0)
5740, 51, 563eqtr4rd 2696 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → (𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘))))
5857ralrimiva 2995 . . . . . 6 (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ‘0)(𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘))))
59 nn0z 11438 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
6059adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑃 ∈ ℙ) → 𝑛 ∈ ℤ)
61 uzid 11740 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
62 peano2uz 11779 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑛) → (𝑛 + 1) ∈ (ℤ𝑛))
6360, 61, 623syl 18 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑃 ∈ ℙ) → (𝑛 + 1) ∈ (ℤ𝑛))
64 uzss 11746 . . . . . . . . . 10 ((𝑛 + 1) ∈ (ℤ𝑛) → (ℤ‘(𝑛 + 1)) ⊆ (ℤ𝑛))
65 ssralv 3699 . . . . . . . . . 10 ((ℤ‘(𝑛 + 1)) ⊆ (ℤ𝑛) → (∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))))
6663, 64, 653syl 18 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑃 ∈ ℙ) → (∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))))
67 oveq1 6697 . . . . . . . . . . 11 ((𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))) = (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) + (𝑃 pCnt (𝑛 + 1))))
68 simpll 805 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑛 ∈ ℕ0)
69 facp1 13105 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
7068, 69syl 17 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
7170oveq2d 6706 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (!‘(𝑛 + 1))) = (𝑃 pCnt ((!‘𝑛) · (𝑛 + 1))))
72 simplr 807 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑃 ∈ ℙ)
73 faccl 13110 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
74 nnz 11437 . . . . . . . . . . . . . . . 16 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ∈ ℤ)
75 nnne0 11091 . . . . . . . . . . . . . . . 16 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ≠ 0)
7674, 75jca 553 . . . . . . . . . . . . . . 15 ((!‘𝑛) ∈ ℕ → ((!‘𝑛) ∈ ℤ ∧ (!‘𝑛) ≠ 0))
7768, 73, 763syl 18 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((!‘𝑛) ∈ ℤ ∧ (!‘𝑛) ≠ 0))
78 nn0p1nn 11370 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
79 nnz 11437 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ∈ ℤ)
80 nnne0 11091 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ≠ 0)
8179, 80jca 553 . . . . . . . . . . . . . . 15 ((𝑛 + 1) ∈ ℕ → ((𝑛 + 1) ∈ ℤ ∧ (𝑛 + 1) ≠ 0))
8268, 78, 813syl 18 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑛 + 1) ∈ ℤ ∧ (𝑛 + 1) ≠ 0))
83 pcmul 15603 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ ((!‘𝑛) ∈ ℤ ∧ (!‘𝑛) ≠ 0) ∧ ((𝑛 + 1) ∈ ℤ ∧ (𝑛 + 1) ≠ 0)) → (𝑃 pCnt ((!‘𝑛) · (𝑛 + 1))) = ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))))
8472, 77, 82, 83syl3anc 1366 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt ((!‘𝑛) · (𝑛 + 1))) = ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))))
8571, 84eqtr2d 2686 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))) = (𝑃 pCnt (!‘(𝑛 + 1))))
8668adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑛 ∈ ℕ0)
8786nn0zd 11518 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑛 ∈ ℤ)
88 prmnn 15435 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
8988ad2antlr 763 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑃 ∈ ℕ)
90 nnexpcl 12913 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
9189, 44, 90syl2an 493 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑃𝑘) ∈ ℕ)
92 fldivp1 15648 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℤ ∧ (𝑃𝑘) ∈ ℕ) → ((⌊‘((𝑛 + 1) / (𝑃𝑘))) − (⌊‘(𝑛 / (𝑃𝑘)))) = if((𝑃𝑘) ∥ (𝑛 + 1), 1, 0))
9387, 91, 92syl2anc 694 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((⌊‘((𝑛 + 1) / (𝑃𝑘))) − (⌊‘(𝑛 / (𝑃𝑘)))) = if((𝑃𝑘) ∥ (𝑛 + 1), 1, 0))
94 elfzuz 12376 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑚) → 𝑘 ∈ (ℤ‘1))
9568, 78syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℕ)
9672, 95pccld 15602 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℕ0)
9796nn0zd 11518 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℤ)
98 elfz5 12372 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ (ℤ‘1) ∧ (𝑃 pCnt (𝑛 + 1)) ∈ ℤ) → (𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))) ↔ 𝑘 ≤ (𝑃 pCnt (𝑛 + 1))))
9994, 97, 98syl2anr 494 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))) ↔ 𝑘 ≤ (𝑃 pCnt (𝑛 + 1))))
100 simpllr 815 . . . . . . . . . . . . . . . . . . 19 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑃 ∈ ℙ)
10186, 78syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑛 + 1) ∈ ℕ)
102101nnzd 11519 . . . . . . . . . . . . . . . . . . 19 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑛 + 1) ∈ ℤ)
10344adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑘 ∈ ℕ0)
104 pcdvdsb 15620 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ (𝑛 + 1) ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝑘 ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃𝑘) ∥ (𝑛 + 1)))
105100, 102, 103, 104syl3anc 1366 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑘 ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃𝑘) ∥ (𝑛 + 1)))
10699, 105bitr2d 269 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((𝑃𝑘) ∥ (𝑛 + 1) ↔ 𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1)))))
107106ifbid 4141 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → if((𝑃𝑘) ∥ (𝑛 + 1), 1, 0) = if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0))
10893, 107eqtrd 2685 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((⌊‘((𝑛 + 1) / (𝑃𝑘))) − (⌊‘(𝑛 / (𝑃𝑘)))) = if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0))
109108sumeq2dv 14477 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)((⌊‘((𝑛 + 1) / (𝑃𝑘))) − (⌊‘(𝑛 / (𝑃𝑘)))) = Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0))
110 fzfid 12812 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (1...𝑚) ∈ Fin)
11168nn0red 11390 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑛 ∈ ℝ)
112 peano2re 10247 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
113111, 112syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℝ)
114113adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑛 + 1) ∈ ℝ)
115114, 91nndivred 11107 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((𝑛 + 1) / (𝑃𝑘)) ∈ ℝ)
116115flcld 12639 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘((𝑛 + 1) / (𝑃𝑘))) ∈ ℤ)
117116zcnd 11521 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘((𝑛 + 1) / (𝑃𝑘))) ∈ ℂ)
118111adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑛 ∈ ℝ)
119118, 91nndivred 11107 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑛 / (𝑃𝑘)) ∈ ℝ)
120119flcld 12639 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘(𝑛 / (𝑃𝑘))) ∈ ℤ)
121120zcnd 11521 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘(𝑛 / (𝑃𝑘))) ∈ ℂ)
122110, 117, 121fsumsub 14564 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)((⌊‘((𝑛 + 1) / (𝑃𝑘))) − (⌊‘(𝑛 / (𝑃𝑘)))) = (Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))))
123 fzfi 12811 . . . . . . . . . . . . . . . 16 (1...𝑚) ∈ Fin
12496nn0red 11390 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℝ)
125 eluzelz 11735 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (ℤ‘(𝑛 + 1)) → 𝑚 ∈ ℤ)
126125adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑚 ∈ ℤ)
127126zred 11520 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑚 ∈ ℝ)
128 prmuz2 15455 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
129128ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑃 ∈ (ℤ‘2))
13095nnnn0d 11389 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℕ0)
131 bernneq3 13032 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ (ℤ‘2) ∧ (𝑛 + 1) ∈ ℕ0) → (𝑛 + 1) < (𝑃↑(𝑛 + 1)))
132129, 130, 131syl2anc 694 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) < (𝑃↑(𝑛 + 1)))
133124, 113letrid 10227 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1) ∨ (𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1))))
134133ord 391 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (¬ (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1) → (𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1))))
13595nnzd 11519 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℤ)
136 pcdvdsb 15620 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℙ ∧ (𝑛 + 1) ∈ ℤ ∧ (𝑛 + 1) ∈ ℕ0) → ((𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1)))
13772, 135, 130, 136syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1)))
13889, 130nnexpcld 13070 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃↑(𝑛 + 1)) ∈ ℕ)
139138nnzd 11519 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃↑(𝑛 + 1)) ∈ ℤ)
140 dvdsle 15079 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃↑(𝑛 + 1)) ∈ ℤ ∧ (𝑛 + 1) ∈ ℕ) → ((𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1) → (𝑃↑(𝑛 + 1)) ≤ (𝑛 + 1)))
141139, 95, 140syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1) → (𝑃↑(𝑛 + 1)) ≤ (𝑛 + 1)))
142138nnred 11073 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃↑(𝑛 + 1)) ∈ ℝ)
143142, 113lenltd 10221 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃↑(𝑛 + 1)) ≤ (𝑛 + 1) ↔ ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1))))
144141, 143sylibd 229 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1) → ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1))))
145137, 144sylbid 230 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1)) → ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1))))
146134, 145syld 47 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (¬ (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1) → ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1))))
147132, 146mt4d 152 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1))
148 eluzle 11738 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (ℤ‘(𝑛 + 1)) → (𝑛 + 1) ≤ 𝑚)
149148adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ≤ 𝑚)
150124, 113, 127, 147, 149letrd 10232 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ≤ 𝑚)
151 eluz 11739 . . . . . . . . . . . . . . . . . . 19 (((𝑃 pCnt (𝑛 + 1)) ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ‘(𝑃 pCnt (𝑛 + 1))) ↔ (𝑃 pCnt (𝑛 + 1)) ≤ 𝑚))
15297, 126, 151syl2anc 694 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑚 ∈ (ℤ‘(𝑃 pCnt (𝑛 + 1))) ↔ (𝑃 pCnt (𝑛 + 1)) ≤ 𝑚))
153150, 152mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑚 ∈ (ℤ‘(𝑃 pCnt (𝑛 + 1))))
154 fzss2 12419 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ‘(𝑃 pCnt (𝑛 + 1))) → (1...(𝑃 pCnt (𝑛 + 1))) ⊆ (1...𝑚))
155153, 154syl 17 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (1...(𝑃 pCnt (𝑛 + 1))) ⊆ (1...𝑚))
156 sumhash 15647 . . . . . . . . . . . . . . . 16 (((1...𝑚) ∈ Fin ∧ (1...(𝑃 pCnt (𝑛 + 1))) ⊆ (1...𝑚)) → Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0) = (#‘(1...(𝑃 pCnt (𝑛 + 1)))))
157123, 155, 156sylancr 696 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0) = (#‘(1...(𝑃 pCnt (𝑛 + 1)))))
158 hashfz1 13174 . . . . . . . . . . . . . . . 16 ((𝑃 pCnt (𝑛 + 1)) ∈ ℕ0 → (#‘(1...(𝑃 pCnt (𝑛 + 1)))) = (𝑃 pCnt (𝑛 + 1)))
15996, 158syl 17 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (#‘(1...(𝑃 pCnt (𝑛 + 1)))) = (𝑃 pCnt (𝑛 + 1)))
160157, 159eqtrd 2685 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0) = (𝑃 pCnt (𝑛 + 1)))
161109, 122, 1603eqtr3d 2693 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))) = (𝑃 pCnt (𝑛 + 1)))
162110, 117fsumcl 14508 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))) ∈ ℂ)
163110, 121fsumcl 14508 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) ∈ ℂ)
164124recnd 10106 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℂ)
165162, 163, 164subaddd 10448 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))) = (𝑃 pCnt (𝑛 + 1)) ↔ (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) + (𝑃 pCnt (𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
166161, 165mpbid 222 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) + (𝑃 pCnt (𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))))
16785, 166eqeq12d 2666 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))) = (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) + (𝑃 pCnt (𝑛 + 1))) ↔ (𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
16867, 167syl5ib 234 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → (𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
169168ralimdva 2991 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑃 ∈ ℙ) → (∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
17066, 169syld 47 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑃 ∈ ℙ) → (∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
171170ex 449 . . . . . . 7 (𝑛 ∈ ℕ0 → (𝑃 ∈ ℙ → (∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))))))
172171a2d 29 . . . . . 6 (𝑛 ∈ ℕ0 → ((𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))) → (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))))))
1739, 18, 27, 36, 58, 172nn0ind 11510 . . . . 5 (𝑁 ∈ ℕ0 → (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘)))))
174173imp 444 . . . 4 ((𝑁 ∈ ℕ0𝑃 ∈ ℙ) → ∀𝑚 ∈ (ℤ𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))))
175 oveq2 6698 . . . . . . 7 (𝑚 = 𝑀 → (1...𝑚) = (1...𝑀))
176175sumeq1d 14475 . . . . . 6 (𝑚 = 𝑀 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘))))
177176eqeq2d 2661 . . . . 5 (𝑚 = 𝑀 → ((𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))) ↔ (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘)))))
178177rspcv 3336 . . . 4 (𝑀 ∈ (ℤ𝑁) → (∀𝑚 ∈ (ℤ𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘)))))
179174, 178syl5 34 . . 3 (𝑀 ∈ (ℤ𝑁) → ((𝑁 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘)))))
1801793impib 1281 . 2 ((𝑀 ∈ (ℤ𝑁) ∧ 𝑁 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘))))
1811803com12 1288 1 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wss 3607  ifcif 4119   class class class wbr 4685  cfv 5926  (class class class)co 6690  Fincfn 7997  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  cz 11415  cuz 11725  ...cfz 12364  cfl 12631  cexp 12900  !cfa 13100  #chash 13157  Σcsu 14460  cdvds 15027  cprime 15432   pCnt cpc 15588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589
This theorem is referenced by:  pcbc  15651
  Copyright terms: Public domain W3C validator