MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcdvdstr Structured version   Visualization version   GIF version

Theorem pcdvdstr 15782
Description: The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
pcdvdstr ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))

Proof of Theorem pcdvdstr
StepHypRef Expression
1 0z 11580 . . . . . . 7 0 ∈ ℤ
2 zq 11987 . . . . . . 7 (0 ∈ ℤ → 0 ∈ ℚ)
31, 2ax-mp 5 . . . . . 6 0 ∈ ℚ
4 pcxcl 15767 . . . . . 6 ((𝑃 ∈ ℙ ∧ 0 ∈ ℚ) → (𝑃 pCnt 0) ∈ ℝ*)
53, 4mpan2 709 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt 0) ∈ ℝ*)
6 xrleid 12176 . . . . 5 ((𝑃 pCnt 0) ∈ ℝ* → (𝑃 pCnt 0) ≤ (𝑃 pCnt 0))
75, 6syl 17 . . . 4 (𝑃 ∈ ℙ → (𝑃 pCnt 0) ≤ (𝑃 pCnt 0))
87ad2antrr 764 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 0) ≤ (𝑃 pCnt 0))
9 simpr 479 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐴 = 0)
109oveq2d 6829 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐴) = (𝑃 pCnt 0))
11 simplr3 1265 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐴𝐵)
129, 11eqbrtrrd 4828 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 0 ∥ 𝐵)
13 simplr2 1263 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐵 ∈ ℤ)
14 0dvds 15204 . . . . . 6 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
1513, 14syl 17 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (0 ∥ 𝐵𝐵 = 0))
1612, 15mpbid 222 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐵 = 0)
1716oveq2d 6829 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐵) = (𝑃 pCnt 0))
188, 10, 173brtr4d 4836 . 2 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
19 simpll 807 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝑃 ∈ ℙ)
20 simplr1 1261 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ)
21 simpr 479 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
22 pczdvds 15769 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
2319, 20, 21, 22syl12anc 1475 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
24 simplr3 1265 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐴𝐵)
25 prmnn 15590 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2619, 25syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝑃 ∈ ℕ)
27 pczcl 15755 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0)
2819, 20, 21, 27syl12anc 1475 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃 pCnt 𝐴) ∈ ℕ0)
2926, 28nnexpcld 13224 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
3029nnzd 11673 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
31 simplr2 1263 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℤ)
32 dvdstr 15220 . . . . 5 (((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴𝐴𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
3330, 20, 31, 32syl3anc 1477 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴𝐴𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
3423, 24, 33mp2and 717 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵)
35 pcdvdsb 15775 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
3619, 31, 28, 35syl3anc 1477 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
3734, 36mpbird 247 . 2 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
3818, 37pm2.61dane 3019 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  (class class class)co 6813  0cc0 10128  *cxr 10265  cle 10267  cn 11212  0cn0 11484  cz 11569  cq 11981  cexp 13054  cdvds 15182  cprime 15587   pCnt cpc 15743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-dvds 15183  df-gcd 15419  df-prm 15588  df-pc 15744
This theorem is referenced by:  pcgcd1  15783  pc2dvds  15785  dvdsppwf1o  25111
  Copyright terms: Public domain W3C validator