![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pccld | Structured version Visualization version GIF version |
Description: Closure of the prime power function. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
pccld.1 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
pccld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
pccld | ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pccld.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
2 | pccld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | pccl 15777 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 pCnt 𝑁) ∈ ℕ0) | |
4 | 1, 2, 3 | syl2anc 696 | 1 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2140 (class class class)co 6815 ℕcn 11233 ℕ0cn0 11505 ℙcprime 15608 pCnt cpc 15764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-2o 7732 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-sup 8516 df-inf 8517 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-n0 11506 df-z 11591 df-uz 11901 df-q 12003 df-rp 12047 df-fl 12808 df-mod 12884 df-seq 13017 df-exp 13076 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-dvds 15204 df-gcd 15440 df-prm 15609 df-pc 15765 |
This theorem is referenced by: pcqmul 15781 pcidlem 15799 pcgcd1 15804 pc2dvds 15806 pcz 15808 pcprmpw2 15809 dvdsprmpweq 15811 pcadd 15816 pcmpt 15819 pcfac 15826 oddprmdvds 15830 pockthg 15833 prmreclem2 15844 sylow1lem1 18234 sylow1lem3 18236 sylow1lem5 18238 pgpfi 18241 slwhash 18260 fislw 18261 gexexlem 18476 ablfac1lem 18688 ablfac1b 18690 ablfac1c 18691 ablfac1eu 18693 pgpfac1lem2 18695 pgpfac1lem3a 18696 ablfaclem3 18707 mumullem2 25127 chtublem 25157 pclogsum 25161 bposlem1 25230 bposlem3 25232 chebbnd1lem1 25379 dchrisum0flblem1 25418 dchrisum0flblem2 25419 |
Copyright terms: Public domain | W3C validator |