MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicabvcxp Structured version   Visualization version   GIF version

Theorem padicabvcxp 25520
Description: All positive powers of the p-adic absolute value are absolute values. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
Assertion
Ref Expression
padicabvcxp ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
Distinct variable groups:   𝑥,𝑞,𝑦   𝑦,𝐽   𝐴,𝑞,𝑥,𝑦   𝑥,𝑄,𝑦   𝑃,𝑞,𝑥,𝑦   𝑅,𝑞,𝑦
Allowed substitution hints:   𝑄(𝑞)   𝑅(𝑥)   𝐽(𝑥,𝑞)

Proof of Theorem padicabvcxp
StepHypRef Expression
1 padic.j . . . . . . 7 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
21padicval 25505 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℚ) → ((𝐽𝑃)‘𝑦) = if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦))))
32adantlr 753 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → ((𝐽𝑃)‘𝑦) = if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦))))
43oveq1d 6828 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = (if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦)))↑𝑐𝑅))
5 ovif 6902 . . . . 5 (if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦)))↑𝑐𝑅) = if(𝑦 = 0, (0↑𝑐𝑅), ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅))
6 rpre 12032 . . . . . . . . . 10 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
76adantl 473 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ)
87recnd 10260 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℂ)
9 rpne0 12041 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 ≠ 0)
109adantl 473 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑅 ≠ 0)
118, 100cxpd 24655 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (0↑𝑐𝑅) = 0)
1211adantr 472 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (0↑𝑐𝑅) = 0)
1312ifeq1d 4248 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → if(𝑦 = 0, (0↑𝑐𝑅), ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)) = if(𝑦 = 0, 0, ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)))
145, 13syl5eq 2806 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦)))↑𝑐𝑅) = if(𝑦 = 0, 0, ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)))
15 df-ne 2933 . . . . . 6 (𝑦 ≠ 0 ↔ ¬ 𝑦 = 0)
16 pcqcl 15763 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
1716adantlr 753 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
1817zcnd 11675 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℂ)
198adantr 472 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑅 ∈ ℂ)
20 mulneg12 10660 . . . . . . . . . . . 12 (((𝑃 pCnt 𝑦) ∈ ℂ ∧ 𝑅 ∈ ℂ) → (-(𝑃 pCnt 𝑦) · 𝑅) = ((𝑃 pCnt 𝑦) · -𝑅))
2118, 19, 20syl2anc 696 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (-(𝑃 pCnt 𝑦) · 𝑅) = ((𝑃 pCnt 𝑦) · -𝑅))
2219negcld 10571 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -𝑅 ∈ ℂ)
2318, 22mulcomd 10253 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃 pCnt 𝑦) · -𝑅) = (-𝑅 · (𝑃 pCnt 𝑦)))
2421, 23eqtrd 2794 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (-(𝑃 pCnt 𝑦) · 𝑅) = (-𝑅 · (𝑃 pCnt 𝑦)))
2524oveq2d 6829 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐(-(𝑃 pCnt 𝑦) · 𝑅)) = (𝑃𝑐(-𝑅 · (𝑃 pCnt 𝑦))))
26 prmuz2 15610 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2726adantr 472 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ (ℤ‘2))
28 eluz2b2 11954 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
2927, 28sylib 208 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃 ∈ ℕ ∧ 1 < 𝑃))
3029simpld 477 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℕ)
3130nnrpd 12063 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℝ+)
3231adantr 472 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑃 ∈ ℝ+)
3317znegcld 11676 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -(𝑃 pCnt 𝑦) ∈ ℤ)
3433zred 11674 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -(𝑃 pCnt 𝑦) ∈ ℝ)
3532, 34, 19cxpmuld 24679 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐(-(𝑃 pCnt 𝑦) · 𝑅)) = ((𝑃𝑐-(𝑃 pCnt 𝑦))↑𝑐𝑅))
367renegcld 10649 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → -𝑅 ∈ ℝ)
3736adantr 472 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -𝑅 ∈ ℝ)
3832, 37, 18cxpmuld 24679 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐(-𝑅 · (𝑃 pCnt 𝑦))) = ((𝑃𝑐-𝑅)↑𝑐(𝑃 pCnt 𝑦)))
3925, 35, 383eqtr3d 2802 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃𝑐-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑𝑐(𝑃 pCnt 𝑦)))
4030nnred 11227 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℝ)
4140recnd 10260 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℂ)
4241adantr 472 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑃 ∈ ℂ)
4330nnne0d 11257 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ≠ 0)
4443adantr 472 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑃 ≠ 0)
4542, 44, 33cxpexpzd 24656 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-(𝑃 pCnt 𝑦)) = (𝑃↑-(𝑃 pCnt 𝑦)))
4645oveq1d 6828 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃𝑐-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅))
4731, 36rpcxpcld 24675 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) ∈ ℝ+)
4847adantr 472 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-𝑅) ∈ ℝ+)
4948rpcnd 12067 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-𝑅) ∈ ℂ)
50 rpne0 12041 . . . . . . . . . 10 ((𝑃𝑐-𝑅) ∈ ℝ+ → (𝑃𝑐-𝑅) ≠ 0)
5148, 50syl 17 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-𝑅) ≠ 0)
5249, 51, 17cxpexpzd 24656 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃𝑐-𝑅)↑𝑐(𝑃 pCnt 𝑦)) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5339, 46, 523eqtr3d 2802 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5453anassrs 683 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) ∧ 𝑦 ≠ 0) → ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5515, 54sylan2br 494 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) ∧ ¬ 𝑦 = 0) → ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5655ifeq2da 4261 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → if(𝑦 = 0, 0, ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)) = if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦))))
574, 14, 563eqtrd 2798 . . 3 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦))))
5857mpteq2dva 4896 . 2 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))))
59 rpre 12032 . . . . 5 ((𝑃𝑐-𝑅) ∈ ℝ+ → (𝑃𝑐-𝑅) ∈ ℝ)
6047, 59syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) ∈ ℝ)
61 rpgt0 12037 . . . . 5 ((𝑃𝑐-𝑅) ∈ ℝ+ → 0 < (𝑃𝑐-𝑅))
6247, 61syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 0 < (𝑃𝑐-𝑅))
63 rpgt0 12037 . . . . . . . 8 (𝑅 ∈ ℝ+ → 0 < 𝑅)
6463adantl 473 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 0 < 𝑅)
657lt0neg2d 10790 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (0 < 𝑅 ↔ -𝑅 < 0))
6664, 65mpbid 222 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → -𝑅 < 0)
6729simprd 482 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 1 < 𝑃)
68 0red 10233 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 0 ∈ ℝ)
6940, 67, 36, 68cxpltd 24664 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (-𝑅 < 0 ↔ (𝑃𝑐-𝑅) < (𝑃𝑐0)))
7066, 69mpbid 222 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) < (𝑃𝑐0))
7141cxp0d 24650 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐0) = 1)
7270, 71breqtrd 4830 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) < 1)
73 0xr 10278 . . . . 5 0 ∈ ℝ*
74 1re 10231 . . . . . 6 1 ∈ ℝ
7574rexri 10289 . . . . 5 1 ∈ ℝ*
76 elioo2 12409 . . . . 5 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑃𝑐-𝑅) ∈ (0(,)1) ↔ ((𝑃𝑐-𝑅) ∈ ℝ ∧ 0 < (𝑃𝑐-𝑅) ∧ (𝑃𝑐-𝑅) < 1)))
7773, 75, 76mp2an 710 . . . 4 ((𝑃𝑐-𝑅) ∈ (0(,)1) ↔ ((𝑃𝑐-𝑅) ∈ ℝ ∧ 0 < (𝑃𝑐-𝑅) ∧ (𝑃𝑐-𝑅) < 1))
7860, 62, 72, 77syl3anbrc 1429 . . 3 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) ∈ (0(,)1))
79 qrng.q . . . 4 𝑄 = (ℂflds ℚ)
80 qabsabv.a . . . 4 𝐴 = (AbsVal‘𝑄)
81 eqid 2760 . . . 4 (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))) = (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦))))
8279, 80, 81padicabv 25518 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃𝑐-𝑅) ∈ (0(,)1)) → (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))) ∈ 𝐴)
8378, 82syldan 488 . 2 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))) ∈ 𝐴)
8458, 83eqeltrd 2839 1 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  ifcif 4230   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   · cmul 10133  *cxr 10265   < clt 10266  -cneg 10459  cn 11212  2c2 11262  cz 11569  cuz 11879  cq 11981  +crp 12025  (,)cioo 12368  cexp 13054  cprime 15587   pCnt cpc 15743  s cress 16060  AbsValcabv 19018  fldccnfld 19948  𝑐ccxp 24501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-dvds 15183  df-gcd 15419  df-prm 15588  df-pc 15744  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-mulg 17742  df-subg 17792  df-cntz 17950  df-cmn 18395  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-drng 18951  df-subrg 18980  df-abv 19019  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-cxp 24503
This theorem is referenced by:  ostth3  25526  ostth  25527
  Copyright terms: Public domain W3C validator