Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddval Structured version   Visualization version   GIF version

Theorem paddval 35599
Description: Projective subspace sum operation value. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddval ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
Distinct variable groups:   𝐴,𝑝   𝑞,𝑝,𝑟,𝐾   𝑋,𝑝,𝑞   𝑌,𝑝,𝑞,𝑟
Allowed substitution hints:   𝐴(𝑟,𝑞)   𝐵(𝑟,𝑞,𝑝)   + (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   𝑋(𝑟)

Proof of Theorem paddval
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 251 . 2 (𝐾𝐵𝐾𝐵)
2 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
3 fvex 6342 . . . 4 (Atoms‘𝐾) ∈ V
42, 3eqeltri 2845 . . 3 𝐴 ∈ V
54elpw2 4956 . 2 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
64elpw2 4956 . 2 (𝑌 ∈ 𝒫 𝐴𝑌𝐴)
7 paddfval.l . . . . . 6 = (le‘𝐾)
8 paddfval.j . . . . . 6 = (join‘𝐾)
9 paddfval.p . . . . . 6 + = (+𝑃𝐾)
107, 8, 2, 9paddfval 35598 . . . . 5 (𝐾𝐵+ = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
1110oveqd 6809 . . . 4 (𝐾𝐵 → (𝑋 + 𝑌) = (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌))
12113ad2ant1 1126 . . 3 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 + 𝑌) = (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌))
13 simpl 468 . . . . . 6 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴)
14 simpr 471 . . . . . 6 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → 𝑌 ∈ 𝒫 𝐴)
15 unexg 7105 . . . . . . 7 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋𝑌) ∈ V)
164rabex 4943 . . . . . . 7 {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)} ∈ V
17 unexg 7105 . . . . . . 7 (((𝑋𝑌) ∈ V ∧ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)} ∈ V) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V)
1815, 16, 17sylancl 566 . . . . . 6 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V)
1913, 14, 183jca 1121 . . . . 5 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ∧ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V))
20193adant1 1123 . . . 4 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ∧ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V))
21 uneq1 3909 . . . . . 6 (𝑚 = 𝑋 → (𝑚𝑛) = (𝑋𝑛))
22 rexeq 3287 . . . . . . 7 (𝑚 = 𝑋 → (∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟) ↔ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)))
2322rabbidv 3338 . . . . . 6 (𝑚 = 𝑋 → {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)} = {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)})
2421, 23uneq12d 3917 . . . . 5 (𝑚 = 𝑋 → ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}) = ((𝑋𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)}))
25 uneq2 3910 . . . . . 6 (𝑛 = 𝑌 → (𝑋𝑛) = (𝑋𝑌))
26 rexeq 3287 . . . . . . . 8 (𝑛 = 𝑌 → (∃𝑟𝑛 𝑝 (𝑞 𝑟) ↔ ∃𝑟𝑌 𝑝 (𝑞 𝑟)))
2726rexbidv 3199 . . . . . . 7 (𝑛 = 𝑌 → (∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟) ↔ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)))
2827rabbidv 3338 . . . . . 6 (𝑛 = 𝑌 → {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)} = {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)})
2925, 28uneq12d 3917 . . . . 5 (𝑛 = 𝑌 → ((𝑋𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)}) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
30 eqid 2770 . . . . 5 (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})) = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))
3124, 29, 30ovmpt2g 6941 . . . 4 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ∧ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V) → (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
3220, 31syl 17 . . 3 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
3312, 32eqtrd 2804 . 2 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
341, 5, 6, 33syl3anbr 1164 1 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  wrex 3061  {crab 3064  Vcvv 3349  cun 3719  wss 3721  𝒫 cpw 4295   class class class wbr 4784  cfv 6031  (class class class)co 6792  cmpt2 6794  lecple 16155  joincjn 17151  Atomscatm 35065  +𝑃cpadd 35596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-padd 35597
This theorem is referenced by:  elpadd  35600  paddunssN  35609  paddcom  35614  paddssat  35615  sspadd1  35616  sspadd2  35617
  Copyright terms: Public domain W3C validator