Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddunN Structured version   Visualization version   GIF version

 Description: The closure of the projective sum of two sets of atoms is the same as the closure of their union. (Closure is actually double polarity, which can be trivially inferred from this theorem using fveq2d 6357.) (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
Assertion
Ref Expression
paddunN ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = ( ‘(𝑆𝑇)))

StepHypRef Expression
1 simp1 1131 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ HL)
2 paddun.a . . . 4 𝐴 = (Atoms‘𝐾)
3 paddun.p . . . 4 + = (+𝑃𝐾)
42, 3paddssat 35621 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ 𝐴)
52, 3paddunssN 35615 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ (𝑆 + 𝑇))
6 paddun.o . . . 4 = (⊥𝑃𝐾)
72, 6polcon3N 35724 . . 3 ((𝐾 ∈ HL ∧ (𝑆 + 𝑇) ⊆ 𝐴 ∧ (𝑆𝑇) ⊆ (𝑆 + 𝑇)) → ( ‘(𝑆 + 𝑇)) ⊆ ( ‘(𝑆𝑇)))
81, 4, 5, 7syl3anc 1477 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) ⊆ ( ‘(𝑆𝑇)))
9 hlclat 35166 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
1093ad2ant1 1128 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ CLat)
11 unss 3930 . . . . . . . . . . 11 ((𝑆𝐴𝑇𝐴) ↔ (𝑆𝑇) ⊆ 𝐴)
1211biimpi 206 . . . . . . . . . 10 ((𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ 𝐴)
13123adant1 1125 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ 𝐴)
14 eqid 2760 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1514, 2atssbase 35098 . . . . . . . . 9 𝐴 ⊆ (Base‘𝐾)
1613, 15syl6ss 3756 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ (Base‘𝐾))
17 eqid 2760 . . . . . . . . 9 (lub‘𝐾) = (lub‘𝐾)
1814, 17clatlubcl 17333 . . . . . . . 8 ((𝐾 ∈ CLat ∧ (𝑆𝑇) ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆𝑇)) ∈ (Base‘𝐾))
1910, 16, 18syl2anc 696 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆𝑇)) ∈ (Base‘𝐾))
20 eqid 2760 . . . . . . . 8 (pmap‘𝐾) = (pmap‘𝐾)
2114, 20pmapssbaN 35567 . . . . . . 7 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘(𝑆𝑇)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾))
221, 19, 21syl2anc 696 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾))
232, 6polssatN 35715 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( 𝑆) ⊆ 𝐴)
24233adant3 1127 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( 𝑆) ⊆ 𝐴)
252, 6polssatN 35715 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ( 𝑆) ⊆ 𝐴) → ( ‘( 𝑆)) ⊆ 𝐴)
261, 24, 25syl2anc 696 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑆)) ⊆ 𝐴)
272, 6polssatN 35715 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑇𝐴) → ( 𝑇) ⊆ 𝐴)
28273adant2 1126 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( 𝑇) ⊆ 𝐴)
292, 6polssatN 35715 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ( 𝑇) ⊆ 𝐴) → ( ‘( 𝑇)) ⊆ 𝐴)
301, 28, 29syl2anc 696 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑇)) ⊆ 𝐴)
311, 26, 303jca 1123 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝐾 ∈ HL ∧ ( ‘( 𝑆)) ⊆ 𝐴 ∧ ( ‘( 𝑇)) ⊆ 𝐴))
322, 62polssN 35722 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴) → 𝑆 ⊆ ( ‘( 𝑆)))
33323adant3 1127 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆 ⊆ ( ‘( 𝑆)))
342, 62polssN 35722 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑇𝐴) → 𝑇 ⊆ ( ‘( 𝑇)))
35343adant2 1126 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇 ⊆ ( ‘( 𝑇)))
3633, 35jca 555 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 ⊆ ( ‘( 𝑆)) ∧ 𝑇 ⊆ ( ‘( 𝑇))))
372, 3paddss12 35626 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ( ‘( 𝑆)) ⊆ 𝐴 ∧ ( ‘( 𝑇)) ⊆ 𝐴) → ((𝑆 ⊆ ( ‘( 𝑆)) ∧ 𝑇 ⊆ ( ‘( 𝑇))) → (𝑆 + 𝑇) ⊆ (( ‘( 𝑆)) + ( ‘( 𝑇)))))
3831, 36, 37sylc 65 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ (( ‘( 𝑆)) + ( ‘( 𝑇))))
3917, 2, 20, 62polvalN 35721 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( ‘( 𝑆)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)))
40393adant3 1127 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑆)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)))
4117, 2, 20, 62polvalN 35721 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑇𝐴) → ( ‘( 𝑇)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇)))
42413adant2 1126 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑇)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇)))
4340, 42oveq12d 6832 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (( ‘( 𝑆)) + ( ‘( 𝑇))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))))
4438, 43sseqtrd 3782 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))))
45 hllat 35171 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Lat)
46453ad2ant1 1128 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ Lat)
47 simp2 1132 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆𝐴)
4847, 15syl6ss 3756 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆 ⊆ (Base‘𝐾))
4914, 17clatlubcl 17333 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
5010, 48, 49syl2anc 696 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
51 simp3 1133 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇𝐴)
5251, 15syl6ss 3756 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇 ⊆ (Base‘𝐾))
5314, 17clatlubcl 17333 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾))
5410, 52, 53syl2anc 696 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾))
55 eqid 2760 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
5614, 55, 20, 3pmapjoin 35659 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))) ⊆ ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
5746, 50, 54, 56syl3anc 1477 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))) ⊆ ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
5844, 57sstrd 3754 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
5914, 55, 17lubun 17344 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))
6010, 48, 52, 59syl3anc 1477 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))
6160fveq2d 6357 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) = ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
6258, 61sseqtr4d 3783 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
63 eqid 2760 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
6414, 63, 17lubss 17342 . . . . . 6 ((𝐾 ∈ CLat ∧ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾) ∧ (𝑆 + 𝑇) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) → ((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))
6510, 22, 62, 64syl3anc 1477 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))
664, 15syl6ss 3756 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ (Base‘𝐾))
6714, 17clatlubcl 17333 . . . . . . 7 ((𝐾 ∈ CLat ∧ (𝑆 + 𝑇) ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆 + 𝑇)) ∈ (Base‘𝐾))
6810, 66, 67syl2anc 696 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆 + 𝑇)) ∈ (Base‘𝐾))
6914, 17clatlubcl 17333 . . . . . . 7 ((𝐾 ∈ CLat ∧ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ∈ (Base‘𝐾))
7010, 22, 69syl2anc 696 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ∈ (Base‘𝐾))
7114, 63, 20pmaple 35568 . . . . . 6 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘(𝑆 + 𝑇)) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ↔ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))))
721, 68, 70, 71syl3anc 1477 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ↔ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))))
7365, 72mpbid 222 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))))
7417, 2, 20, 62polvalN 35721 . . . . 5 ((𝐾 ∈ HL ∧ (𝑆 + 𝑇) ⊆ 𝐴) → ( ‘( ‘(𝑆 + 𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))))
751, 4, 74syl2anc 696 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆 + 𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))))
7617, 2, 20, 62polvalN 35721 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝑇) ⊆ 𝐴) → ( ‘( ‘(𝑆𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
771, 13, 76syl2anc 696 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
7817, 2, 202pmaplubN 35733 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝑇) ⊆ 𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
791, 13, 78syl2anc 696 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
8077, 79eqtr4d 2797 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))))
8173, 75, 803sstr4d 3789 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆 + 𝑇))) ⊆ ( ‘( ‘(𝑆𝑇))))
822, 62polcon4bN 35725 . . . 4 ((𝐾 ∈ HL ∧ (𝑆 + 𝑇) ⊆ 𝐴 ∧ (𝑆𝑇) ⊆ 𝐴) → (( ‘( ‘(𝑆 + 𝑇))) ⊆ ( ‘( ‘(𝑆𝑇))) ↔ ( ‘(𝑆𝑇)) ⊆ ( ‘(𝑆 + 𝑇))))
831, 4, 13, 82syl3anc 1477 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (( ‘( ‘(𝑆 + 𝑇))) ⊆ ( ‘( ‘(𝑆𝑇))) ↔ ( ‘(𝑆𝑇)) ⊆ ( ‘(𝑆 + 𝑇))))
8481, 83mpbid 222 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆𝑇)) ⊆ ( ‘(𝑆 + 𝑇)))
858, 84eqssd 3761 1 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = ( ‘(𝑆𝑇)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ∪ cun 3713   ⊆ wss 3715   class class class wbr 4804  ‘cfv 6049  (class class class)co 6814  Basecbs 16079  lecple 16170  lubclub 17163  joincjn 17165  Latclat 17266  CLatccla 17328  Atomscatm 35071  HLchlt 35158  pmapcpmap 35304  +𝑃cpadd 35602  ⊥𝑃cpolN 35709 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-riotaBAD 34760 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-undef 7569  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-p1 17261  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-psubsp 35310  df-pmap 35311  df-padd 35603  df-polarityN 35710 This theorem is referenced by:  poldmj1N  35735
 Copyright terms: Public domain W3C validator