Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddss2 Structured version   Visualization version   GIF version

Theorem paddss2 35576
Description: Subset law for projective subspace sum. (unss2 3915 analog.) (Contributed by NM, 7-Mar-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddss2 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑋𝑌 → (𝑍 + 𝑋) ⊆ (𝑍 + 𝑌)))

Proof of Theorem paddss2
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3726 . . . . . . 7 (𝑋𝑌 → (𝑝𝑋𝑝𝑌))
21orim2d 921 . . . . . 6 (𝑋𝑌 → ((𝑝𝑍𝑝𝑋) → (𝑝𝑍𝑝𝑌)))
3 ssrexv 3796 . . . . . . . 8 (𝑋𝑌 → (∃𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → ∃𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
43reximdv 3142 . . . . . . 7 (𝑋𝑌 → (∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
54anim2d 590 . . . . . 6 (𝑋𝑌 → ((𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))))
62, 5orim12d 919 . . . . 5 (𝑋𝑌 → (((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
76adantl 473 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
8 simpl1 1204 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝐾𝐵)
9 simpl3 1208 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑍𝐴)
10 sstr 3740 . . . . . . 7 ((𝑋𝑌𝑌𝐴) → 𝑋𝐴)
11103ad2antr2 1181 . . . . . 6 ((𝑋𝑌 ∧ (𝐾𝐵𝑌𝐴𝑍𝐴)) → 𝑋𝐴)
1211ancoms 468 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑋𝐴)
13 eqid 2748 . . . . . 6 (le‘𝐾) = (le‘𝐾)
14 eqid 2748 . . . . . 6 (join‘𝐾) = (join‘𝐾)
15 padd0.a . . . . . 6 𝐴 = (Atoms‘𝐾)
16 padd0.p . . . . . 6 + = (+𝑃𝐾)
1713, 14, 15, 16elpadd 35557 . . . . 5 ((𝐾𝐵𝑍𝐴𝑋𝐴) → (𝑝 ∈ (𝑍 + 𝑋) ↔ ((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
188, 9, 12, 17syl3anc 1463 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑍 + 𝑋) ↔ ((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
19 simpl2 1206 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑌𝐴)
2013, 14, 15, 16elpadd 35557 . . . . 5 ((𝐾𝐵𝑍𝐴𝑌𝐴) → (𝑝 ∈ (𝑍 + 𝑌) ↔ ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
218, 9, 19, 20syl3anc 1463 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑍 + 𝑌) ↔ ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
227, 18, 213imtr4d 283 . . 3 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑍 + 𝑋) → 𝑝 ∈ (𝑍 + 𝑌)))
2322ssrdv 3738 . 2 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑍 + 𝑋) ⊆ (𝑍 + 𝑌))
2423ex 449 1 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑋𝑌 → (𝑍 + 𝑋) ⊆ (𝑍 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1620  wcel 2127  wrex 3039  wss 3703   class class class wbr 4792  cfv 6037  (class class class)co 6801  lecple 16121  joincjn 17116  Atomscatm 35022  +𝑃cpadd 35553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-1st 7321  df-2nd 7322  df-padd 35554
This theorem is referenced by:  paddss12  35577  pmod1i  35606
  Copyright terms: Public domain W3C validator