Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddfval Structured version   Visualization version   GIF version

Theorem paddfval 35586
Description: Projective subspace sum operation. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddfval (𝐾𝐵+ = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑚,𝑞,𝑟,𝐾,𝑛,𝑝
Allowed substitution hints:   𝐴(𝑟,𝑞)   𝐵(𝑚,𝑛,𝑟,𝑞,𝑝)   + (𝑚,𝑛,𝑟,𝑞,𝑝)   (𝑚,𝑛,𝑟,𝑞,𝑝)   (𝑚,𝑛,𝑟,𝑞,𝑝)

Proof of Theorem paddfval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 3352 . 2 (𝐾𝐵𝐾 ∈ V)
2 paddfval.p . . 3 + = (+𝑃𝐾)
3 fveq2 6352 . . . . . . 7 ( = 𝐾 → (Atoms‘) = (Atoms‘𝐾))
4 paddfval.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4syl6eqr 2812 . . . . . 6 ( = 𝐾 → (Atoms‘) = 𝐴)
65pweqd 4307 . . . . 5 ( = 𝐾 → 𝒫 (Atoms‘) = 𝒫 𝐴)
7 eqidd 2761 . . . . . . . . 9 ( = 𝐾𝑝 = 𝑝)
8 fveq2 6352 . . . . . . . . . 10 ( = 𝐾 → (le‘) = (le‘𝐾))
9 paddfval.l . . . . . . . . . 10 = (le‘𝐾)
108, 9syl6eqr 2812 . . . . . . . . 9 ( = 𝐾 → (le‘) = )
11 fveq2 6352 . . . . . . . . . . 11 ( = 𝐾 → (join‘) = (join‘𝐾))
12 paddfval.j . . . . . . . . . . 11 = (join‘𝐾)
1311, 12syl6eqr 2812 . . . . . . . . . 10 ( = 𝐾 → (join‘) = )
1413oveqd 6830 . . . . . . . . 9 ( = 𝐾 → (𝑞(join‘)𝑟) = (𝑞 𝑟))
157, 10, 14breq123d 4818 . . . . . . . 8 ( = 𝐾 → (𝑝(le‘)(𝑞(join‘)𝑟) ↔ 𝑝 (𝑞 𝑟)))
16152rexbidv 3195 . . . . . . 7 ( = 𝐾 → (∃𝑞𝑚𝑟𝑛 𝑝(le‘)(𝑞(join‘)𝑟) ↔ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)))
175, 16rabeqbidv 3335 . . . . . 6 ( = 𝐾 → {𝑝 ∈ (Atoms‘) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘)(𝑞(join‘)𝑟)} = {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})
1817uneq2d 3910 . . . . 5 ( = 𝐾 → ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘)(𝑞(join‘)𝑟)}) = ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))
196, 6, 18mpt2eq123dv 6882 . . . 4 ( = 𝐾 → (𝑚 ∈ 𝒫 (Atoms‘), 𝑛 ∈ 𝒫 (Atoms‘) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘)(𝑞(join‘)𝑟)})) = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
20 df-padd 35585 . . . 4 +𝑃 = ( ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘), 𝑛 ∈ 𝒫 (Atoms‘) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘)(𝑞(join‘)𝑟)})))
21 fvex 6362 . . . . . . 7 (Atoms‘𝐾) ∈ V
224, 21eqeltri 2835 . . . . . 6 𝐴 ∈ V
2322pwex 4997 . . . . 5 𝒫 𝐴 ∈ V
2423, 23mpt2ex 7415 . . . 4 (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})) ∈ V
2519, 20, 24fvmpt 6444 . . 3 (𝐾 ∈ V → (+𝑃𝐾) = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
262, 25syl5eq 2806 . 2 (𝐾 ∈ V → + = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
271, 26syl 17 1 (𝐾𝐵+ = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  wrex 3051  {crab 3054  Vcvv 3340  cun 3713  𝒫 cpw 4302   class class class wbr 4804  cfv 6049  (class class class)co 6813  cmpt2 6815  lecple 16150  joincjn 17145  Atomscatm 35053  +𝑃cpadd 35584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-padd 35585
This theorem is referenced by:  paddval  35587
  Copyright terms: Public domain W3C validator