Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddcom Structured version   Visualization version   GIF version

Theorem paddcom 35621
Description: Projective subspace sum commutes. (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddcom ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem paddcom
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uncom 3908 . . . 4 (𝑋𝑌) = (𝑌𝑋)
21a1i 11 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋𝑌) = (𝑌𝑋))
3 simpl1 1227 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝐾 ∈ Lat)
4 simpl2 1229 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑋𝐴)
5 simprl 754 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑞𝑋)
64, 5sseldd 3753 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑞𝐴)
7 eqid 2771 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
8 padd0.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
97, 8atbase 35098 . . . . . . . . 9 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
106, 9syl 17 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑞 ∈ (Base‘𝐾))
11 simpl3 1231 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑌𝐴)
12 simprr 756 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑟𝑌)
1311, 12sseldd 3753 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑟𝐴)
147, 8atbase 35098 . . . . . . . . 9 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
1513, 14syl 17 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑟 ∈ (Base‘𝐾))
16 eqid 2771 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
177, 16latjcom 17267 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑞(join‘𝐾)𝑟) = (𝑟(join‘𝐾)𝑞))
183, 10, 15, 17syl3anc 1476 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → (𝑞(join‘𝐾)𝑟) = (𝑟(join‘𝐾)𝑞))
1918breq2d 4798 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → (𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)))
20192rexbidva 3204 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)))
21 rexcom 3247 . . . . 5 (∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞) ↔ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞))
2220, 21syl6bb 276 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)))
2322rabbidv 3339 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} = {𝑝𝐴 ∣ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)})
242, 23uneq12d 3919 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) = ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)}))
25 eqid 2771 . . 3 (le‘𝐾) = (le‘𝐾)
26 padd0.p . . 3 + = (+𝑃𝐾)
2725, 16, 8, 26paddval 35606 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}))
2825, 16, 8, 26paddval 35606 . . 3 ((𝐾 ∈ Lat ∧ 𝑌𝐴𝑋𝐴) → (𝑌 + 𝑋) = ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)}))
29283com23 1120 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑌 + 𝑋) = ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)}))
3024, 27, 293eqtr4d 2815 1 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wrex 3062  {crab 3065  cun 3721  wss 3723   class class class wbr 4786  cfv 6031  (class class class)co 6793  Basecbs 16064  lecple 16156  joincjn 17152  Latclat 17253  Atomscatm 35072  +𝑃cpadd 35603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-lub 17182  df-join 17184  df-lat 17254  df-ats 35076  df-padd 35604
This theorem is referenced by:  paddass  35646  padd12N  35647  pmod2iN  35657  pmodN  35658  pmapjat2  35662
  Copyright terms: Public domain W3C validator