Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddclN Structured version   Visualization version   GIF version

Theorem paddclN 35446
Description: The projective sum of two subspaces is a subspace. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddidm.s 𝑆 = (PSubSp‘𝐾)
paddidm.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddclN ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)

Proof of Theorem paddclN
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1081 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → 𝐾 ∈ HL)
2 eqid 2651 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3 paddidm.s . . . . 5 𝑆 = (PSubSp‘𝐾)
42, 3psubssat 35358 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
543adant3 1101 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
62, 3psubssat 35358 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
763adant2 1100 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
8 paddidm.p . . . 4 + = (+𝑃𝐾)
92, 8paddssat 35418 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
101, 5, 7, 9syl3anc 1366 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
11 olc 398 . . . . 5 ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → ((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))))
12 eqid 2651 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
13 eqid 2651 . . . . . . . 8 (join‘𝐾) = (join‘𝐾)
1412, 13, 2, 8elpadd 35403 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → (𝑝 ∈ ((𝑋 + 𝑌) + (𝑋 + 𝑌)) ↔ ((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
151, 10, 10, 14syl3anc 1366 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑝 ∈ ((𝑋 + 𝑌) + (𝑋 + 𝑌)) ↔ ((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
162, 8padd4N 35444 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
171, 5, 7, 5, 7, 16syl122anc 1375 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
183, 8paddidm 35445 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝑆) → (𝑋 + 𝑋) = 𝑋)
19183adant3 1101 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑋) = 𝑋)
203, 8paddidm 35445 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑌𝑆) → (𝑌 + 𝑌) = 𝑌)
21203adant2 1100 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑌 + 𝑌) = 𝑌)
2219, 21oveq12d 6708 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = (𝑋 + 𝑌))
2317, 22eqtrd 2685 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = (𝑋 + 𝑌))
2423eleq2d 2716 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑝 ∈ ((𝑋 + 𝑌) + (𝑋 + 𝑌)) ↔ 𝑝 ∈ (𝑋 + 𝑌)))
2515, 24bitr3d 270 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) ↔ 𝑝 ∈ (𝑋 + 𝑌)))
2611, 25syl5ib 234 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → 𝑝 ∈ (𝑋 + 𝑌)))
2726expd 451 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑝 ∈ (Atoms‘𝐾) → (∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌))))
2827ralrimiv 2994 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ∀𝑝 ∈ (Atoms‘𝐾)(∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌)))
2912, 13, 2, 3ispsubsp2 35350 . . 3 (𝐾 ∈ HL → ((𝑋 + 𝑌) ∈ 𝑆 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ (Atoms‘𝐾)(∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌)))))
30293ad2ant1 1102 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ((𝑋 + 𝑌) ∈ 𝑆 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ (Atoms‘𝐾)(∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌)))))
3110, 28, 30mpbir2and 977 1 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  wss 3607   class class class wbr 4685  cfv 5926  (class class class)co 6690  lecple 15995  joincjn 16991  Atomscatm 34868  HLchlt 34955  PSubSpcpsubsp 35100  +𝑃cpadd 35399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-psubsp 35107  df-padd 35400
This theorem is referenced by:  pmodl42N  35455  pclun2N  35503
  Copyright terms: Public domain W3C validator