Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem7 Structured version   Visualization version   GIF version

Theorem paddasslem7 35627
Description: Lemma for paddass 35639. Combine paddasslem5 35625 and paddasslem6 35626. (Contributed by NM, 9-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
paddasslem7 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑠𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦)) ∧ 𝑠 (𝑝 𝑧))) → 𝑝 (𝑠 𝑧))

Proof of Theorem paddasslem7
StepHypRef Expression
1 simpl1 1226 . 2 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑠𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦)) ∧ 𝑠 (𝑝 𝑧))) → 𝐾 ∈ HL)
2 simpl21 1319 . . 3 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑠𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦)) ∧ 𝑠 (𝑝 𝑧))) → 𝑝𝐴)
3 simpl23 1323 . . 3 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑠𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦)) ∧ 𝑠 (𝑝 𝑧))) → 𝑠𝐴)
42, 3jca 495 . 2 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑠𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦)) ∧ 𝑠 (𝑝 𝑧))) → (𝑝𝐴𝑠𝐴))
5 simpl33 1329 . 2 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑠𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦)) ∧ 𝑠 (𝑝 𝑧))) → 𝑧𝐴)
6 simpl22 1321 . . 3 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑠𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦)) ∧ 𝑠 (𝑝 𝑧))) → 𝑟𝐴)
7 simpl3 1230 . . 3 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑠𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦)) ∧ 𝑠 (𝑝 𝑧))) → (𝑥𝐴𝑦𝐴𝑧𝐴))
8 simprl 746 . . 3 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑠𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦)) ∧ 𝑠 (𝑝 𝑧))) → (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦)))
9 paddasslem.l . . . 4 = (le‘𝐾)
10 paddasslem.j . . . 4 = (join‘𝐾)
11 paddasslem.a . . . 4 𝐴 = (Atoms‘𝐾)
129, 10, 11paddasslem5 35625 . . 3 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦))) → 𝑠𝑧)
131, 6, 7, 8, 12syl31anc 1478 . 2 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑠𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦)) ∧ 𝑠 (𝑝 𝑧))) → 𝑠𝑧)
14 simprr 748 . 2 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑠𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦)) ∧ 𝑠 (𝑝 𝑧))) → 𝑠 (𝑝 𝑧))
159, 10, 11paddasslem6 35626 . 2 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑠𝐴) ∧ 𝑧𝐴) ∧ (𝑠𝑧𝑠 (𝑝 𝑧))) → 𝑝 (𝑠 𝑧))
161, 4, 5, 13, 14, 15syl32anc 1483 1 (((𝐾 ∈ HL ∧ (𝑝𝐴𝑟𝐴𝑠𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦)) ∧ 𝑠 (𝑝 𝑧))) → 𝑝 (𝑠 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942   class class class wbr 4784  cfv 6031  (class class class)co 6792  lecple 16155  joincjn 17151  Atomscatm 35065  HLchlt 35152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-lat 17253  df-covers 35068  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153
This theorem is referenced by:  paddasslem9  35629
  Copyright terms: Public domain W3C validator