Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  padd01 Structured version   Visualization version   GIF version

Theorem padd01 35415
Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
padd01 ((𝐾𝐵𝑋𝐴) → (𝑋 + ∅) = 𝑋)

Proof of Theorem padd01
StepHypRef Expression
1 simpl 472 . . . 4 ((𝐾𝐵𝑋𝐴) → 𝐾𝐵)
2 simpr 476 . . . 4 ((𝐾𝐵𝑋𝐴) → 𝑋𝐴)
3 0ss 4005 . . . . 5 ∅ ⊆ 𝐴
43a1i 11 . . . 4 ((𝐾𝐵𝑋𝐴) → ∅ ⊆ 𝐴)
51, 2, 43jca 1261 . . 3 ((𝐾𝐵𝑋𝐴) → (𝐾𝐵𝑋𝐴 ∧ ∅ ⊆ 𝐴))
6 neirr 2832 . . . 4 ¬ ∅ ≠ ∅
76intnan 980 . . 3 ¬ (𝑋 ≠ ∅ ∧ ∅ ≠ ∅)
8 padd0.a . . . 4 𝐴 = (Atoms‘𝐾)
9 padd0.p . . . 4 + = (+𝑃𝐾)
108, 9paddval0 35414 . . 3 (((𝐾𝐵𝑋𝐴 ∧ ∅ ⊆ 𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ ∅ ≠ ∅)) → (𝑋 + ∅) = (𝑋 ∪ ∅))
115, 7, 10sylancl 695 . 2 ((𝐾𝐵𝑋𝐴) → (𝑋 + ∅) = (𝑋 ∪ ∅))
12 un0 4000 . 2 (𝑋 ∪ ∅) = 𝑋
1311, 12syl6eq 2701 1 ((𝐾𝐵𝑋𝐴) → (𝑋 + ∅) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  cun 3605  wss 3607  c0 3948  cfv 5926  (class class class)co 6690  Atomscatm 34868  +𝑃cpadd 35399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-padd 35400
This theorem is referenced by:  paddasslem17  35440  pmodlem2  35451
  Copyright terms: Public domain W3C validator