MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p1val Structured version   Visualization version   GIF version

Theorem p1val 17264
Description: Value of poset zero. (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
p1val.b 𝐵 = (Base‘𝐾)
p1val.u 𝑈 = (lub‘𝐾)
p1val.t 1 = (1.‘𝐾)
Assertion
Ref Expression
p1val (𝐾𝑉1 = (𝑈𝐵))

Proof of Theorem p1val
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3353 . 2 (𝐾𝑉𝐾 ∈ V)
2 p1val.t . . 3 1 = (1.‘𝐾)
3 fveq2 6354 . . . . . 6 (𝑘 = 𝐾 → (lub‘𝑘) = (lub‘𝐾))
4 p1val.u . . . . . 6 𝑈 = (lub‘𝐾)
53, 4syl6eqr 2813 . . . . 5 (𝑘 = 𝐾 → (lub‘𝑘) = 𝑈)
6 fveq2 6354 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
7 p1val.b . . . . . 6 𝐵 = (Base‘𝐾)
86, 7syl6eqr 2813 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
95, 8fveq12d 6360 . . . 4 (𝑘 = 𝐾 → ((lub‘𝑘)‘(Base‘𝑘)) = (𝑈𝐵))
10 df-p1 17262 . . . 4 1. = (𝑘 ∈ V ↦ ((lub‘𝑘)‘(Base‘𝑘)))
11 fvex 6364 . . . 4 (𝑈𝐵) ∈ V
129, 10, 11fvmpt 6446 . . 3 (𝐾 ∈ V → (1.‘𝐾) = (𝑈𝐵))
132, 12syl5eq 2807 . 2 (𝐾 ∈ V → 1 = (𝑈𝐵))
141, 13syl 17 1 (𝐾𝑉1 = (𝑈𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2140  Vcvv 3341  cfv 6050  Basecbs 16080  lubclub 17164  1.cp1 17260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pr 5056
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-iota 6013  df-fun 6052  df-fv 6058  df-p1 17262
This theorem is referenced by:  ple1  17266  clatp1cl  30003  xrsp1  30013  op1cl  34994
  Copyright terms: Public domain W3C validator