![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovresd | Structured version Visualization version GIF version |
Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ovresd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
ovresd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
Ref | Expression |
---|---|
ovresd | ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovresd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | ovresd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
3 | ovres 6966 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
4 | 1, 2, 3 | syl2anc 696 | 1 ⊢ (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 × cxp 5264 ↾ cres 5268 (class class class)co 6814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-xp 5272 df-res 5278 df-iota 6012 df-fv 6057 df-ov 6817 |
This theorem is referenced by: sscres 16704 fullsubc 16731 fullresc 16732 funcres2c 16782 psmetres2 22340 xmetres2 22387 prdsdsf 22393 xpsdsval 22407 xmssym 22491 xmstri2 22492 mstri2 22493 xmstri 22494 mstri 22495 xmstri3 22496 mstri3 22497 msrtri 22498 tmsxpsval 22564 ngptgp 22661 nlmvscn 22712 nrginvrcn 22717 nghmcn 22770 cnmpt1ds 22866 cnmpt2ds 22867 ipcn 23265 caussi 23315 causs 23316 minveclem2 23417 minveclem3b 23419 minveclem3 23420 minveclem4 23423 minveclem6 23425 ftc1lem6 24023 ulmdvlem1 24373 abelth 24414 cxpcn3 24709 rlimcnp 24912 hhssnv 28451 madjusmdetlem3 30225 qqhcn 30365 qqhucn 30366 ftc1cnnc 33815 ismtyres 33938 isdrngo2 34088 rngchom 42495 ringchom 42541 irinitoringc 42597 rhmsubclem4 42617 |
Copyright terms: Public domain | W3C validator |