![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovres | Structured version Visualization version GIF version |
Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.) |
Ref | Expression |
---|---|
ovres | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5305 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
2 | fvres 6368 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) |
4 | df-ov 6816 | . 2 ⊢ (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) | |
5 | df-ov 6816 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
6 | 3, 4, 5 | 3eqtr4g 2819 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 〈cop 4327 × cxp 5264 ↾ cres 5268 ‘cfv 6049 (class class class)co 6813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-xp 5272 df-res 5278 df-iota 6012 df-fv 6057 df-ov 6816 |
This theorem is referenced by: ovresd 6966 oprres 6967 oprssov 6968 ofmresval 7075 cantnfval2 8739 mulnzcnopr 10865 prdsdsval3 16347 frmdplusg 17592 frmdadd 17593 grpissubg 17815 gaid 17932 gass 17934 gasubg 17935 mplsubrglem 19641 mamures 20398 mdetrlin 20610 mdetrsca 20611 pmatcollpw3lem 20790 tsmsxplem1 22157 tsmsxplem2 22158 xmetres2 22367 ressprdsds 22377 blres 22437 xmetresbl 22443 mscl 22467 xmscl 22468 xmsge0 22469 xmseq0 22470 nmfval2 22596 nmval2 22597 isngp3 22603 ngpds 22609 ngpocelbl 22709 xrsdsre 22814 divcn 22872 cncfmet 22912 cfilresi 23293 cfilres 23294 dvdsmulf1o 25119 sspgval 27893 sspsval 27895 sspmlem 27896 hhssabloilem 28427 hhssabloi 28428 hhssnv 28430 hhssmetdval 28444 raddcn 30284 xrge0pluscn 30295 cvmlift2lem9 31600 icoreval 33512 icoreelrnab 33513 equivbnd2 33904 ismtyres 33920 iccbnd 33952 exidreslem 33989 divrngcl 34069 isdrngo2 34070 rnghmresel 42474 rnghmsscmap2 42483 rnghmsscmap 42484 rnghmsubcsetclem2 42486 rngcifuestrc 42507 rhmresel 42520 rhmsscmap2 42529 rhmsscmap 42530 rhmsubcsetclem2 42532 rhmsscrnghm 42536 rhmsubcrngclem2 42538 rhmsubclem4 42599 |
Copyright terms: Public domain | W3C validator |