MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovprc2 Structured version   Visualization version   GIF version

Theorem ovprc2 6829
Description: The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
ovprc1.1 Rel dom 𝐹
Assertion
Ref Expression
ovprc2 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ovprc2
StepHypRef Expression
1 simpr 471 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V)
21con3i 151 . 2 𝐵 ∈ V → ¬ (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 ovprc1.1 . . 3 Rel dom 𝐹
43ovprc 6827 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
52, 4syl 17 1 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1630  wcel 2144  Vcvv 3349  c0 4061  dom cdm 5249  Rel wrel 5254  (class class class)co 6792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-xp 5255  df-rel 5256  df-dm 5259  df-iota 5994  df-fv 6039  df-ov 6795
This theorem is referenced by:  ressbasss  16138  ress0  16140  wunress  16147  0rest  16297  firest  16300  subcmn  18448  dprdval0prc  18608  psrbas  19592  psr1val  19770  vr1val  19776  ply1ascl  19842  evl1fval  19906  zrhval  20070  dsmmval2  20296  restbas  21182  resstopn  21210  deg1fval  24059  wwlksn  26964  clwwlknOLD  27176  submomnd  30044  suborng  30149  bj-restsnid  33365
  Copyright terms: Public domain W3C validator