Step | Hyp | Ref
| Expression |
1 | | ovolsca.3 |
. . . 4
⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) |
2 | | ssrab2 3834 |
. . . 4
⊢ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ⊆ ℝ |
3 | 1, 2 | syl6eqss 3802 |
. . 3
⊢ (𝜑 → 𝐵 ⊆ ℝ) |
4 | | ovolcl 23465 |
. . 3
⊢ (𝐵 ⊆ ℝ →
(vol*‘𝐵) ∈
ℝ*) |
5 | 3, 4 | syl 17 |
. 2
⊢ (𝜑 → (vol*‘𝐵) ∈
ℝ*) |
6 | | ovolsca.7 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
7 | | ovolfcl 23453 |
. . . . . . . . . . . 12
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
8 | 6, 7 | sylan 561 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
9 | 8 | simp3d 1137 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛))) |
10 | 8 | simp1d 1135 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ∈
ℝ) |
11 | 8 | simp2d 1136 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) ∈
ℝ) |
12 | | ovolsca.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
13 | 12 | rpregt0d 12080 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
14 | 13 | adantr 466 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
15 | | lediv1 11089 |
. . . . . . . . . . 11
⊢
(((1st ‘(𝐹‘𝑛)) ∈ ℝ ∧ (2nd
‘(𝐹‘𝑛)) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → ((1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)) ↔ ((1st
‘(𝐹‘𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹‘𝑛)) / 𝐶))) |
16 | 10, 11, 14, 15 | syl3anc 1475 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)) ↔ ((1st
‘(𝐹‘𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹‘𝑛)) / 𝐶))) |
17 | 9, 16 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹‘𝑛)) / 𝐶)) |
18 | | df-br 4785 |
. . . . . . . . 9
⊢
(((1st ‘(𝐹‘𝑛)) / 𝐶) ≤ ((2nd ‘(𝐹‘𝑛)) / 𝐶) ↔ 〈((1st
‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉 ∈ ≤ ) |
19 | 17, 18 | sylib 208 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉 ∈ ≤ ) |
20 | 12 | adantr 466 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐶 ∈
ℝ+) |
21 | 10, 20 | rerpdivcld 12105 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) / 𝐶) ∈ ℝ) |
22 | 11, 20 | rerpdivcld 12105 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((2nd
‘(𝐹‘𝑛)) / 𝐶) ∈ ℝ) |
23 | | opelxpi 5288 |
. . . . . . . . 9
⊢
((((1st ‘(𝐹‘𝑛)) / 𝐶) ∈ ℝ ∧ ((2nd
‘(𝐹‘𝑛)) / 𝐶) ∈ ℝ) →
〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉 ∈ (ℝ ×
ℝ)) |
24 | 21, 22, 23 | syl2anc 565 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉 ∈ (ℝ ×
ℝ)) |
25 | 19, 24 | elind 3947 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉 ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
26 | | ovolsca.6 |
. . . . . . 7
⊢ 𝐺 = (𝑛 ∈ ℕ ↦
〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉) |
27 | 25, 26 | fmptd 6527 |
. . . . . 6
⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
28 | | eqid 2770 |
. . . . . . 7
⊢ ((abs
∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) |
29 | | eqid 2770 |
. . . . . . 7
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝐺)) = seq1( + , ((abs ∘ − )
∘ 𝐺)) |
30 | 28, 29 | ovolsf 23459 |
. . . . . 6
⊢ (𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘
𝐺)):ℕ⟶(0[,)+∞)) |
31 | 27, 30 | syl 17 |
. . . . 5
⊢ (𝜑 → seq1( + , ((abs ∘
− ) ∘ 𝐺)):ℕ⟶(0[,)+∞)) |
32 | | frn 6193 |
. . . . 5
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞) → ran
seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ (0[,)+∞)) |
33 | 31, 32 | syl 17 |
. . . 4
⊢ (𝜑 → ran seq1( + , ((abs
∘ − ) ∘ 𝐺)) ⊆ (0[,)+∞)) |
34 | | icossxr 12462 |
. . . 4
⊢
(0[,)+∞) ⊆ ℝ* |
35 | 33, 34 | syl6ss 3762 |
. . 3
⊢ (𝜑 → ran seq1( + , ((abs
∘ − ) ∘ 𝐺)) ⊆
ℝ*) |
36 | | supxrcl 12349 |
. . 3
⊢ (ran
seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* →
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ∈
ℝ*) |
37 | 35, 36 | syl 17 |
. 2
⊢ (𝜑 → sup(ran seq1( + , ((abs
∘ − ) ∘ 𝐺)), ℝ*, < ) ∈
ℝ*) |
38 | | ovolsca.4 |
. . . . 5
⊢ (𝜑 → (vol*‘𝐴) ∈
ℝ) |
39 | 38, 12 | rerpdivcld 12105 |
. . . 4
⊢ (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℝ) |
40 | | ovolsca.9 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
41 | 40 | rpred 12074 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ ℝ) |
42 | 39, 41 | readdcld 10270 |
. . 3
⊢ (𝜑 → (((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ) |
43 | 42 | rexrd 10290 |
. 2
⊢ (𝜑 → (((vol*‘𝐴) / 𝐶) + 𝑅) ∈
ℝ*) |
44 | 1 | eleq2d 2835 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})) |
45 | | oveq2 6800 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦)) |
46 | 45 | eleq1d 2834 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝐶 · 𝑥) ∈ 𝐴 ↔ (𝐶 · 𝑦) ∈ 𝐴)) |
47 | 46 | elrab 3513 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) |
48 | 44, 47 | syl6bb 276 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴))) |
49 | | breq2 4788 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐶 · 𝑦) → ((1st ‘(𝐹‘𝑛)) < 𝑥 ↔ (1st ‘(𝐹‘𝑛)) < (𝐶 · 𝑦))) |
50 | | breq1 4787 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐶 · 𝑦) → (𝑥 < (2nd ‘(𝐹‘𝑛)) ↔ (𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛)))) |
51 | 49, 50 | anbi12d 608 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐶 · 𝑦) → (((1st ‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) ↔ ((1st ‘(𝐹‘𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛))))) |
52 | 51 | rexbidv 3199 |
. . . . . . . . 9
⊢ (𝑥 = (𝐶 · 𝑦) → (∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛))))) |
53 | | ovolsca.8 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ ∪ ran
((,) ∘ 𝐹)) |
54 | | ovolsca.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
55 | | ovolfioo 23454 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐹) ↔
∀𝑥 ∈ 𝐴 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))))) |
56 | 54, 6, 55 | syl2anc 565 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐹) ↔
∀𝑥 ∈ 𝐴 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛))))) |
57 | 53, 56 | mpbid 222 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛)))) |
58 | 57 | adantr 466 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → ∀𝑥 ∈ 𝐴 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < 𝑥 ∧ 𝑥 < (2nd ‘(𝐹‘𝑛)))) |
59 | | simprr 748 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → (𝐶 · 𝑦) ∈ 𝐴) |
60 | 52, 58, 59 | rspcdva 3464 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛)))) |
61 | | opex 5060 |
. . . . . . . . . . . . . . . 16
⊢
〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉 ∈ V |
62 | 26 | fvmpt2 6433 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ ∧
〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉 ∈ V) → (𝐺‘𝑛) = 〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉) |
63 | 61, 62 | mpan2 663 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝐺‘𝑛) = 〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉) |
64 | 63 | fveq2d 6336 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ →
(1st ‘(𝐺‘𝑛)) = (1st
‘〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉)) |
65 | | ovex 6822 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘(𝐹‘𝑛)) / 𝐶) ∈ V |
66 | | ovex 6822 |
. . . . . . . . . . . . . . 15
⊢
((2nd ‘(𝐹‘𝑛)) / 𝐶) ∈ V |
67 | 65, 66 | op1st 7322 |
. . . . . . . . . . . . . 14
⊢
(1st ‘〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉) = ((1st ‘(𝐹‘𝑛)) / 𝐶) |
68 | 64, 67 | syl6eq 2820 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ →
(1st ‘(𝐺‘𝑛)) = ((1st ‘(𝐹‘𝑛)) / 𝐶)) |
69 | 68 | adantl 467 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) = ((1st
‘(𝐹‘𝑛)) / 𝐶)) |
70 | 69 | breq1d 4794 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐺‘𝑛)) < 𝑦 ↔ ((1st ‘(𝐹‘𝑛)) / 𝐶) < 𝑦)) |
71 | 10 | adantlr 686 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ∈
ℝ) |
72 | | simplrl 754 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑦 ∈ ℝ) |
73 | 14 | adantlr 686 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
74 | | ltdivmul 11099 |
. . . . . . . . . . . 12
⊢
(((1st ‘(𝐹‘𝑛)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (((1st
‘(𝐹‘𝑛)) / 𝐶) < 𝑦 ↔ (1st ‘(𝐹‘𝑛)) < (𝐶 · 𝑦))) |
75 | 71, 72, 73, 74 | syl3anc 1475 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st
‘(𝐹‘𝑛)) / 𝐶) < 𝑦 ↔ (1st ‘(𝐹‘𝑛)) < (𝐶 · 𝑦))) |
76 | 70, 75 | bitr2d 269 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) < (𝐶 · 𝑦) ↔ (1st ‘(𝐺‘𝑛)) < 𝑦)) |
77 | 11 | adantlr 686 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) ∈
ℝ) |
78 | | ltmuldiv2 11098 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹‘𝑛)) / 𝐶))) |
79 | 72, 77, 73, 78 | syl3anc 1475 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹‘𝑛)) / 𝐶))) |
80 | 63 | fveq2d 6336 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ →
(2nd ‘(𝐺‘𝑛)) = (2nd
‘〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉)) |
81 | 65, 66 | op2nd 7323 |
. . . . . . . . . . . . . 14
⊢
(2nd ‘〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉) = ((2nd ‘(𝐹‘𝑛)) / 𝐶) |
82 | 80, 81 | syl6eq 2820 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ →
(2nd ‘(𝐺‘𝑛)) = ((2nd ‘(𝐹‘𝑛)) / 𝐶)) |
83 | 82 | adantl 467 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘𝑛)) = ((2nd
‘(𝐹‘𝑛)) / 𝐶)) |
84 | 83 | breq2d 4796 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑦 < (2nd ‘(𝐺‘𝑛)) ↔ 𝑦 < ((2nd ‘(𝐹‘𝑛)) / 𝐶))) |
85 | 79, 84 | bitr4d 271 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛)) ↔ 𝑦 < (2nd ‘(𝐺‘𝑛)))) |
86 | 76, 85 | anbi12d 608 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) ∧ 𝑛 ∈ ℕ) → (((1st
‘(𝐹‘𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛))) ↔ ((1st ‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛))))) |
87 | 86 | rexbidva 3196 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → (∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) < (𝐶 · 𝑦) ∧ (𝐶 · 𝑦) < (2nd ‘(𝐹‘𝑛))) ↔ ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛))))) |
88 | 60, 87 | mpbid 222 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴)) → ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛)))) |
89 | 88 | ex 397 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ ℝ ∧ (𝐶 · 𝑦) ∈ 𝐴) → ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛))))) |
90 | 48, 89 | sylbid 230 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐵 → ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛))))) |
91 | 90 | ralrimiv 3113 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛)))) |
92 | | ovolfioo 23454 |
. . . . 5
⊢ ((𝐵 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐵 ⊆ ∪ ran
((,) ∘ 𝐺) ↔
∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛))))) |
93 | 3, 27, 92 | syl2anc 565 |
. . . 4
⊢ (𝜑 → (𝐵 ⊆ ∪ ran
((,) ∘ 𝐺) ↔
∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℕ ((1st
‘(𝐺‘𝑛)) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐺‘𝑛))))) |
94 | 91, 93 | mpbird 247 |
. . 3
⊢ (𝜑 → 𝐵 ⊆ ∪ ran
((,) ∘ 𝐺)) |
95 | 29 | ovollb 23466 |
. . 3
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝐵 ⊆ ∪ ran
((,) ∘ 𝐺)) →
(vol*‘𝐵) ≤ sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, <
)) |
96 | 27, 94, 95 | syl2anc 565 |
. 2
⊢ (𝜑 → (vol*‘𝐵) ≤ sup(ran seq1( + , ((abs
∘ − ) ∘ 𝐺)), ℝ*, <
)) |
97 | | fzfid 12979 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin) |
98 | 12 | rpcnd 12076 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) |
99 | 98 | adantr 466 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐶 ∈ ℂ) |
100 | | simpl 468 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝜑) |
101 | | elfznn 12576 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ) |
102 | 11, 10 | resubcld 10659 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((2nd
‘(𝐹‘𝑛)) − (1st
‘(𝐹‘𝑛))) ∈
ℝ) |
103 | 100, 101,
102 | syl2an 575 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) ∈ ℝ) |
104 | 103 | recnd 10269 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) ∈ ℂ) |
105 | 12 | rpne0d 12079 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ≠ 0) |
106 | 105 | adantr 466 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐶 ≠ 0) |
107 | 97, 99, 104, 106 | fsumdivc 14724 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) = Σ𝑛 ∈ (1...𝑘)(((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶)) |
108 | 82, 68 | oveq12d 6810 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ →
((2nd ‘(𝐺‘𝑛)) − (1st ‘(𝐺‘𝑛))) = (((2nd ‘(𝐹‘𝑛)) / 𝐶) − ((1st ‘(𝐹‘𝑛)) / 𝐶))) |
109 | 108 | adantl 467 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((2nd
‘(𝐺‘𝑛)) − (1st
‘(𝐺‘𝑛))) = (((2nd
‘(𝐹‘𝑛)) / 𝐶) − ((1st ‘(𝐹‘𝑛)) / 𝐶))) |
110 | 28 | ovolfsval 23457 |
. . . . . . . . . . 11
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺‘𝑛)) − (1st ‘(𝐺‘𝑛)))) |
111 | 27, 110 | sylan 561 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑛) = ((2nd ‘(𝐺‘𝑛)) − (1st ‘(𝐺‘𝑛)))) |
112 | 11 | recnd 10269 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) ∈
ℂ) |
113 | 10 | recnd 10269 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ∈
ℂ) |
114 | 12 | rpcnne0d 12083 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) |
115 | 114 | adantr 466 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) |
116 | | divsubdir 10922 |
. . . . . . . . . . 11
⊢
(((2nd ‘(𝐹‘𝑛)) ∈ ℂ ∧ (1st
‘(𝐹‘𝑛)) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) →
(((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) = (((2nd ‘(𝐹‘𝑛)) / 𝐶) − ((1st ‘(𝐹‘𝑛)) / 𝐶))) |
117 | 112, 113,
115, 116 | syl3anc 1475 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((2nd
‘(𝐹‘𝑛)) − (1st
‘(𝐹‘𝑛))) / 𝐶) = (((2nd ‘(𝐹‘𝑛)) / 𝐶) − ((1st ‘(𝐹‘𝑛)) / 𝐶))) |
118 | 109, 111,
117 | 3eqtr4d 2814 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘𝑛) = (((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶)) |
119 | 100, 101,
118 | syl2an 575 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐺)‘𝑛) = (((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶)) |
120 | | simpr 471 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
121 | | nnuz 11924 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
122 | 120, 121 | syl6eleq 2859 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
(ℤ≥‘1)) |
123 | 102, 20 | rerpdivcld 12105 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((2nd
‘(𝐹‘𝑛)) − (1st
‘(𝐹‘𝑛))) / 𝐶) ∈ ℝ) |
124 | 123 | recnd 10269 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((2nd
‘(𝐹‘𝑛)) − (1st
‘(𝐹‘𝑛))) / 𝐶) ∈ ℂ) |
125 | 100, 101,
124 | syl2an 575 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) ∈ ℂ) |
126 | 119, 122,
125 | fsumser 14668 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)(((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) = (seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘)) |
127 | 107, 126 | eqtrd 2804 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) = (seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘)) |
128 | | ovolsca.10 |
. . . . . . . . . . 11
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 · 𝑅))) |
129 | | eqid 2770 |
. . . . . . . . . . . . . . . 16
⊢ ((abs
∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) |
130 | | ovolsca.5 |
. . . . . . . . . . . . . . . 16
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
131 | 129, 130 | ovolsf 23459 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
132 | 6, 131 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
133 | | frn 6193 |
. . . . . . . . . . . . . 14
⊢ (𝑆:ℕ⟶(0[,)+∞)
→ ran 𝑆 ⊆
(0[,)+∞)) |
134 | 132, 133 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
135 | 134, 34 | syl6ss 3762 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝑆 ⊆
ℝ*) |
136 | 12, 40 | rpmulcld 12090 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶 · 𝑅) ∈
ℝ+) |
137 | 136 | rpred 12074 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐶 · 𝑅) ∈ ℝ) |
138 | 38, 137 | readdcld 10270 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((vol*‘𝐴) + (𝐶 · 𝑅)) ∈ ℝ) |
139 | 138 | rexrd 10290 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((vol*‘𝐴) + (𝐶 · 𝑅)) ∈
ℝ*) |
140 | | supxrleub 12360 |
. . . . . . . . . . . 12
⊢ ((ran
𝑆 ⊆
ℝ* ∧ ((vol*‘𝐴) + (𝐶 · 𝑅)) ∈ ℝ*) →
(sup(ran 𝑆,
ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))) |
141 | 135, 139,
140 | syl2anc 565 |
. . . . . . . . . . 11
⊢ (𝜑 → (sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))) |
142 | 128, 141 | mpbid 222 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))) |
143 | | ffn 6185 |
. . . . . . . . . . . 12
⊢ (𝑆:ℕ⟶(0[,)+∞)
→ 𝑆 Fn
ℕ) |
144 | 132, 143 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 Fn ℕ) |
145 | | breq1 4787 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑆‘𝑘) → (𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ (𝑆‘𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))) |
146 | 145 | ralrn 6505 |
. . . . . . . . . . 11
⊢ (𝑆 Fn ℕ →
(∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))) |
147 | 144, 146 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑥 ∈ ran 𝑆 𝑥 ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)) ↔ ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅)))) |
148 | 142, 147 | mpbid 222 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑆‘𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))) |
149 | 148 | r19.21bi 3080 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))) |
150 | 6 | adantr 466 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
151 | 129 | ovolfsval 23457 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘𝑛) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛)))) |
152 | 150, 101,
151 | syl2an 575 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (((abs ∘ − ) ∘
𝐹)‘𝑛) = ((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛)))) |
153 | 152, 122,
104 | fsumser 14668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘)) |
154 | 130 | fveq1i 6333 |
. . . . . . . . 9
⊢ (𝑆‘𝑘) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘) |
155 | 153, 154 | syl6eqr 2822 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) = (𝑆‘𝑘)) |
156 | 39 | recnd 10269 |
. . . . . . . . . . 11
⊢ (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℂ) |
157 | 40 | rpcnd 12076 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ ℂ) |
158 | 98, 156, 157 | adddid 10265 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)) = ((𝐶 · ((vol*‘𝐴) / 𝐶)) + (𝐶 · 𝑅))) |
159 | 38 | recnd 10269 |
. . . . . . . . . . . 12
⊢ (𝜑 → (vol*‘𝐴) ∈
ℂ) |
160 | 159, 98, 105 | divcan2d 11004 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 · ((vol*‘𝐴) / 𝐶)) = (vol*‘𝐴)) |
161 | 160 | oveq1d 6807 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐶 · ((vol*‘𝐴) / 𝐶)) + (𝐶 · 𝑅)) = ((vol*‘𝐴) + (𝐶 · 𝑅))) |
162 | 158, 161 | eqtrd 2804 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)) = ((vol*‘𝐴) + (𝐶 · 𝑅))) |
163 | 162 | adantr 466 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)) = ((vol*‘𝐴) + (𝐶 · 𝑅))) |
164 | 149, 155,
163 | 3brtr4d 4816 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) ≤ (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅))) |
165 | 97, 103 | fsumrecl 14672 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) ∈ ℝ) |
166 | 42 | adantr 466 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ) |
167 | 13 | adantr 466 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
168 | | ledivmul 11100 |
. . . . . . . 8
⊢
((Σ𝑛 ∈
(1...𝑘)((2nd
‘(𝐹‘𝑛)) − (1st
‘(𝐹‘𝑛))) ∈ ℝ ∧
(((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) ≤ (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)))) |
169 | 165, 166,
167, 168 | syl3anc 1475 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) ≤ (𝐶 · (((vol*‘𝐴) / 𝐶) + 𝑅)))) |
170 | 164, 169 | mpbird 247 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑛 ∈ (1...𝑘)((2nd ‘(𝐹‘𝑛)) − (1st ‘(𝐹‘𝑛))) / 𝐶) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)) |
171 | 127, 170 | eqbrtrrd 4808 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)) |
172 | 171 | ralrimiva 3114 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ ℕ (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)) |
173 | | ffn 6185 |
. . . . . 6
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝐺)):ℕ⟶(0[,)+∞) →
seq1( + , ((abs ∘ − ) ∘ 𝐺)) Fn ℕ) |
174 | 31, 173 | syl 17 |
. . . . 5
⊢ (𝜑 → seq1( + , ((abs ∘
− ) ∘ 𝐺)) Fn
ℕ) |
175 | | breq1 4787 |
. . . . . 6
⊢ (𝑦 = (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘𝑘) → (𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ (seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))) |
176 | 175 | ralrn 6505 |
. . . . 5
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝐺)) Fn ℕ → (∀𝑦 ∈ ran seq1( + , ((abs
∘ − ) ∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑘 ∈ ℕ (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))) |
177 | 174, 176 | syl 17 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ ran seq1( + , ((abs
∘ − ) ∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑘 ∈ ℕ (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘𝑘) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))) |
178 | 172, 177 | mpbird 247 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ ran seq1( + , ((abs ∘ − )
∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)) |
179 | | supxrleub 12360 |
. . . 4
⊢ ((ran
seq1( + , ((abs ∘ − ) ∘ 𝐺)) ⊆ ℝ* ∧
(((vol*‘𝐴) / 𝐶) + 𝑅) ∈ ℝ*) →
(sup(ran seq1( + , ((abs ∘ − ) ∘ 𝐺)), ℝ*, < ) ≤
(((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑦 ∈ ran seq1( + , ((abs ∘ − )
∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))) |
180 | 35, 43, 179 | syl2anc 565 |
. . 3
⊢ (𝜑 → (sup(ran seq1( + , ((abs
∘ − ) ∘ 𝐺)), ℝ*, < ) ≤
(((vol*‘𝐴) / 𝐶) + 𝑅) ↔ ∀𝑦 ∈ ran seq1( + , ((abs ∘ − )
∘ 𝐺))𝑦 ≤ (((vol*‘𝐴) / 𝐶) + 𝑅))) |
181 | 178, 180 | mpbird 247 |
. 2
⊢ (𝜑 → sup(ran seq1( + , ((abs
∘ − ) ∘ 𝐺)), ℝ*, < ) ≤
(((vol*‘𝐴) / 𝐶) + 𝑅)) |
182 | 5, 37, 43, 96, 181 | xrletrd 12197 |
1
⊢ (𝜑 → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)) |