![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolre | Structured version Visualization version GIF version |
Description: The measure of the real numbers. (Contributed by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
ovolre | ⊢ (vol*‘ℝ) = +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3773 | . . . 4 ⊢ ℝ ⊆ ℝ | |
2 | ovolcl 23466 | . . . 4 ⊢ (ℝ ⊆ ℝ → (vol*‘ℝ) ∈ ℝ*) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (vol*‘ℝ) ∈ ℝ* |
4 | pnfge 12169 | . . 3 ⊢ ((vol*‘ℝ) ∈ ℝ* → (vol*‘ℝ) ≤ +∞) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (vol*‘ℝ) ≤ +∞ |
6 | 0re 10242 | . . . 4 ⊢ 0 ∈ ℝ | |
7 | ovolicopnf 23512 | . . . 4 ⊢ (0 ∈ ℝ → (vol*‘(0[,)+∞)) = +∞) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (vol*‘(0[,)+∞)) = +∞ |
9 | rge0ssre 12487 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ | |
10 | ovolss 23473 | . . . 4 ⊢ (((0[,)+∞) ⊆ ℝ ∧ ℝ ⊆ ℝ) → (vol*‘(0[,)+∞)) ≤ (vol*‘ℝ)) | |
11 | 9, 1, 10 | mp2an 672 | . . 3 ⊢ (vol*‘(0[,)+∞)) ≤ (vol*‘ℝ) |
12 | 8, 11 | eqbrtrri 4809 | . 2 ⊢ +∞ ≤ (vol*‘ℝ) |
13 | pnfxr 10294 | . . 3 ⊢ +∞ ∈ ℝ* | |
14 | xrletri3 12190 | . . 3 ⊢ (((vol*‘ℝ) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol*‘ℝ) = +∞ ↔ ((vol*‘ℝ) ≤ +∞ ∧ +∞ ≤ (vol*‘ℝ)))) | |
15 | 3, 13, 14 | mp2an 672 | . 2 ⊢ ((vol*‘ℝ) = +∞ ↔ ((vol*‘ℝ) ≤ +∞ ∧ +∞ ≤ (vol*‘ℝ))) |
16 | 5, 12, 15 | mpbir2an 690 | 1 ⊢ (vol*‘ℝ) = +∞ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 ℝcr 10137 0cc0 10138 +∞cpnf 10273 ℝ*cxr 10275 ≤ cle 10277 [,)cico 12382 vol*covol 23450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fi 8473 df-sup 8504 df-inf 8505 df-oi 8571 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-q 11992 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-sum 14625 df-rest 16291 df-topgen 16312 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-top 20919 df-topon 20936 df-bases 20971 df-cmp 21411 df-ovol 23452 |
This theorem is referenced by: i1f0rn 23669 ovoliunnfl 33784 voliunnfl 33786 volsupnfl 33787 |
Copyright terms: Public domain | W3C validator |