MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolmge0 Structured version   Visualization version   GIF version

Theorem ovolmge0 23291
Description: The set 𝑀 is composed of nonnegative extended real numbers. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypothesis
Ref Expression
ovolval.1 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolmge0 (𝐵𝑀 → 0 ≤ 𝐵)
Distinct variable groups:   𝑦,𝑓,𝐴   𝐵,𝑓,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑓)

Proof of Theorem ovolmge0
StepHypRef Expression
1 ovolval.1 . . 3 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
21elovolm 23289 . 2 (𝐵𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3 reex 10065 . . . . . . . . 9 ℝ ∈ V
43, 3xpex 7004 . . . . . . . 8 (ℝ × ℝ) ∈ V
54inex2 4833 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ∈ V
6 nnex 11064 . . . . . . 7 ℕ ∈ V
75, 6elmap 7928 . . . . . 6 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
8 eqid 2651 . . . . . . . . . 10 ((abs ∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓)
9 eqid 2651 . . . . . . . . . 10 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
108, 9ovolsf 23287 . . . . . . . . 9 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞))
11 1nn 11069 . . . . . . . . 9 1 ∈ ℕ
12 ffvelrn 6397 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞))
1310, 11, 12sylancl 695 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞))
14 elrege0 12316 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞) ↔ ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ ∧ 0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1)))
1514simprbi 479 . . . . . . . 8 ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ (0[,)+∞) → 0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1))
1613, 15syl 17 . . . . . . 7 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1))
17 frn 6091 . . . . . . . . . 10 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ (0[,)+∞))
1810, 17syl 17 . . . . . . . . 9 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ (0[,)+∞))
19 icossxr 12296 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ*
2018, 19syl6ss 3648 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
21 ffn 6083 . . . . . . . . . 10 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ)
2210, 21syl 17 . . . . . . . . 9 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ)
23 fnfvelrn 6396 . . . . . . . . 9 ((seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ ∧ 1 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓)))
2422, 11, 23sylancl 695 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓)))
25 supxrub 12192 . . . . . . . 8 ((ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
2620, 24, 25syl2anc 694 . . . . . . 7 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
2719, 13sseldi 3634 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ*)
28 supxrcl 12183 . . . . . . . . 9 (ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
2920, 28syl 17 . . . . . . . 8 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
30 0xr 10124 . . . . . . . . 9 0 ∈ ℝ*
31 xrletr 12027 . . . . . . . . 9 ((0 ∈ ℝ* ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ* ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*) → ((0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3230, 31mp3an1 1451 . . . . . . . 8 (((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∈ ℝ* ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*) → ((0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3327, 29, 32syl2anc 694 . . . . . . 7 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((0 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ∧ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘1) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3416, 26, 33mp2and 715 . . . . . 6 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
357, 34sylbi 207 . . . . 5 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
36 breq2 4689 . . . . 5 (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (0 ≤ 𝐵 ↔ 0 ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3735, 36syl5ibrcom 237 . . . 4 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → (𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → 0 ≤ 𝐵))
3837adantld 482 . . 3 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ 𝐵))
3938rexlimiv 3056 . 2 (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 0 ≤ 𝐵)
402, 39sylbi 207 1 (𝐵𝑀 → 0 ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wrex 2942  {crab 2945  cin 3606  wss 3607   cuni 4468   class class class wbr 4685   × cxp 5141  ran crn 5144  ccom 5147   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  supcsup 8387  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cmin 10304  cn 11058  (,)cioo 12213  [,)cico 12215  seqcseq 12841  abscabs 14018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020
This theorem is referenced by:  ovolge0  23295
  Copyright terms: Public domain W3C validator