MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2lem5 Structured version   Visualization version   GIF version

Theorem ovolicc2lem5 23508
Description: Lemma for ovolicc2 23509. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolicc2.5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolicc2.6 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
ovolicc2.7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
ovolicc2.8 (𝜑𝐺:𝑈⟶ℕ)
ovolicc2.9 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
ovolicc2.10 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
Assertion
Ref Expression
ovolicc2lem5 (𝜑 → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑢,𝑡,𝐴   𝑡,𝐵,𝑢   𝑡,𝐹   𝑡,𝐺   𝜑,𝑡   𝑡,𝑇   𝑡,𝑈,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝑆(𝑢,𝑡)   𝑇(𝑢)   𝐹(𝑢)   𝐺(𝑢)

Proof of Theorem ovolicc2lem5
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolicc2.7 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
2 ovolicc.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
32rexrd 10290 . . . . 5 (𝜑𝐴 ∈ ℝ*)
4 ovolicc.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
54rexrd 10290 . . . . 5 (𝜑𝐵 ∈ ℝ*)
6 ovolicc.3 . . . . 5 (𝜑𝐴𝐵)
7 lbicc2 12494 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
83, 5, 6, 7syl3anc 1475 . . . 4 (𝜑𝐴 ∈ (𝐴[,]𝐵))
91, 8sseldd 3751 . . 3 (𝜑𝐴 𝑈)
10 eluni2 4576 . . 3 (𝐴 𝑈 ↔ ∃𝑧𝑈 𝐴𝑧)
119, 10sylib 208 . 2 (𝜑 → ∃𝑧𝑈 𝐴𝑧)
12 ovolicc2.6 . . . . . . . 8 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
13 elin 3945 . . . . . . . 8 (𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin) ↔ (𝑈 ∈ 𝒫 ran ((,) ∘ 𝐹) ∧ 𝑈 ∈ Fin))
1412, 13sylib 208 . . . . . . 7 (𝜑 → (𝑈 ∈ 𝒫 ran ((,) ∘ 𝐹) ∧ 𝑈 ∈ Fin))
1514simprd 477 . . . . . 6 (𝜑𝑈 ∈ Fin)
16 ovolicc2.10 . . . . . . 7 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
17 ssrab2 3834 . . . . . . 7 {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} ⊆ 𝑈
1816, 17eqsstri 3782 . . . . . 6 𝑇𝑈
19 ssfi 8335 . . . . . 6 ((𝑈 ∈ Fin ∧ 𝑇𝑈) → 𝑇 ∈ Fin)
2015, 18, 19sylancl 566 . . . . 5 (𝜑𝑇 ∈ Fin)
211adantr 466 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐴[,]𝐵) ⊆ 𝑈)
22 inss2 3980 . . . . . . . . . . . . 13 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
23 ovolicc2.8 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝑈⟶ℕ)
24 ineq1 3956 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑡 → (𝑢 ∩ (𝐴[,]𝐵)) = (𝑡 ∩ (𝐴[,]𝐵)))
2524neeq1d 3001 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑡 → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅))
2625, 16elrab2 3516 . . . . . . . . . . . . . . . 16 (𝑡𝑇 ↔ (𝑡𝑈 ∧ (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅))
2726simplbi 479 . . . . . . . . . . . . . . 15 (𝑡𝑇𝑡𝑈)
28 ffvelrn 6500 . . . . . . . . . . . . . . 15 ((𝐺:𝑈⟶ℕ ∧ 𝑡𝑈) → (𝐺𝑡) ∈ ℕ)
2923, 27, 28syl2an 575 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → (𝐺𝑡) ∈ ℕ)
30 ovolicc2.5 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3130ffvelrnda 6502 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐺𝑡) ∈ ℕ) → (𝐹‘(𝐺𝑡)) ∈ ( ≤ ∩ (ℝ × ℝ)))
3229, 31syldan 571 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → (𝐹‘(𝐺𝑡)) ∈ ( ≤ ∩ (ℝ × ℝ)))
3322, 32sseldi 3748 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ))
34 xp2nd 7347 . . . . . . . . . . . 12 ((𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
3533, 34syl 17 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
364adantr 466 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 𝐵 ∈ ℝ)
3735, 36ifcld 4268 . . . . . . . . . 10 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ)
3826simprbi 478 . . . . . . . . . . . . . 14 (𝑡𝑇 → (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅)
3938adantl 467 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅)
40 n0 4076 . . . . . . . . . . . . 13 ((𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))
4139, 40sylib 208 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → ∃𝑦 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))
422adantr 466 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐴 ∈ ℝ)
43 simprr 748 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))
44 elin 3945 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)) ↔ (𝑦𝑡𝑦 ∈ (𝐴[,]𝐵)))
4543, 44sylib 208 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦𝑡𝑦 ∈ (𝐴[,]𝐵)))
4645simprd 477 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ (𝐴[,]𝐵))
474adantr 466 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐵 ∈ ℝ)
48 elicc2 12442 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
4942, 47, 48syl2anc 565 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
5046, 49mpbid 222 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
5150simp1d 1135 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ ℝ)
5233adantrr 688 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ))
5352, 34syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
5450simp2d 1136 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐴𝑦)
5545simpld 476 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦𝑡)
5629adantrr 688 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝐺𝑡) ∈ ℕ)
57 fvco3 6417 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝐺𝑡) ∈ ℕ) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = ((,)‘(𝐹‘(𝐺𝑡))))
5830, 57sylan 561 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐺𝑡) ∈ ℕ) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = ((,)‘(𝐹‘(𝐺𝑡))))
5956, 58syldan 571 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = ((,)‘(𝐹‘(𝐺𝑡))))
60 ovolicc2.9 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
6127, 60sylan2 572 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡𝑇) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
6261adantrr 688 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
63 1st2nd2 7353 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ) → (𝐹‘(𝐺𝑡)) = ⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩)
6452, 63syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝐹‘(𝐺𝑡)) = ⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩)
6564fveq2d 6336 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → ((,)‘(𝐹‘(𝐺𝑡))) = ((,)‘⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩))
66 df-ov 6795 . . . . . . . . . . . . . . . . . . . . 21 ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) = ((,)‘⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩)
6765, 66syl6eqr 2822 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → ((,)‘(𝐹‘(𝐺𝑡))) = ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))))
6859, 62, 673eqtr3d 2812 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑡 = ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))))
6955, 68eleqtrd 2851 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))))
70 xp1st 7346 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ) → (1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
7152, 70syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
72 rexr 10286 . . . . . . . . . . . . . . . . . . . 20 ((1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ → (1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ*)
73 rexr 10286 . . . . . . . . . . . . . . . . . . . 20 ((2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ*)
74 elioo2 12420 . . . . . . . . . . . . . . . . . . . 20 (((1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ* ∧ (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ*) → (𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) ↔ (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))))
7572, 73, 74syl2an 575 . . . . . . . . . . . . . . . . . . 19 (((1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ ∧ (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ) → (𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) ↔ (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))))
7671, 53, 75syl2anc 565 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) ↔ (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))))
7769, 76mpbid 222 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡)))))
7877simp3d 1137 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))
7951, 53, 78ltled 10386 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ≤ (2nd ‘(𝐹‘(𝐺𝑡))))
8042, 51, 53, 54, 79letrd 10395 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))))
8180expr 444 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → (𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡)))))
8281exlimdv 2012 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (∃𝑦 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡)))))
8341, 82mpd 15 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))))
846adantr 466 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 𝐴𝐵)
85 breq2 4788 . . . . . . . . . . . 12 ((2nd ‘(𝐹‘(𝐺𝑡))) = if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) → (𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))) ↔ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵)))
86 breq2 4788 . . . . . . . . . . . 12 (𝐵 = if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) → (𝐴𝐵𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵)))
8785, 86ifboth 4261 . . . . . . . . . . 11 ((𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))) ∧ 𝐴𝐵) → 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵))
8883, 84, 87syl2anc 565 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵))
89 min2 12225 . . . . . . . . . . 11 (((2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)
9035, 36, 89syl2anc 565 . . . . . . . . . 10 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)
91 elicc2 12442 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵) ↔ (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ ∧ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)))
922, 4, 91syl2anc 565 . . . . . . . . . . 11 (𝜑 → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵) ↔ (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ ∧ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)))
9392adantr 466 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵) ↔ (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ ∧ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)))
9437, 88, 90, 93mpbir3and 1426 . . . . . . . . 9 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵))
9521, 94sseldd 3751 . . . . . . . 8 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑈)
96 eluni2 4576 . . . . . . . 8 (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑈 ↔ ∃𝑥𝑈 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
9795, 96sylib 208 . . . . . . 7 ((𝜑𝑡𝑇) → ∃𝑥𝑈 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
98 simprl 746 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → 𝑥𝑈)
99 simprr 748 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
10094adantr 466 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵))
101 inelcm 4173 . . . . . . . . . . . 12 ((if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵)) → (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅)
10299, 100, 101syl2anc 565 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅)
103 ineq1 3956 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → (𝑢 ∩ (𝐴[,]𝐵)) = (𝑥 ∩ (𝐴[,]𝐵)))
104103neeq1d 3001 . . . . . . . . . . . 12 (𝑢 = 𝑥 → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅))
105104, 16elrab2 3516 . . . . . . . . . . 11 (𝑥𝑇 ↔ (𝑥𝑈 ∧ (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅))
10698, 102, 105sylanbrc 564 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → 𝑥𝑇)
107106, 99jca 495 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → (𝑥𝑇 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥))
108107ex 397 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥) → (𝑥𝑇 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)))
109108reximdv2 3161 . . . . . . 7 ((𝜑𝑡𝑇) → (∃𝑥𝑈 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥 → ∃𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥))
11097, 109mpd 15 . . . . . 6 ((𝜑𝑡𝑇) → ∃𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
111110ralrimiva 3114 . . . . 5 (𝜑 → ∀𝑡𝑇𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
112 eleq2 2838 . . . . . 6 (𝑥 = (𝑡) → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥 ↔ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
113112ac6sfi 8359 . . . . 5 ((𝑇 ∈ Fin ∧ ∀𝑡𝑇𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥) → ∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
11420, 111, 113syl2anc 565 . . . 4 (𝜑 → ∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
115114adantr 466 . . 3 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → ∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
116 fveq2 6332 . . . . . . . . . . . 12 (𝑥 = 𝑡 → (𝐺𝑥) = (𝐺𝑡))
117116fveq2d 6336 . . . . . . . . . . 11 (𝑥 = 𝑡 → (𝐹‘(𝐺𝑥)) = (𝐹‘(𝐺𝑡)))
118117fveq2d 6336 . . . . . . . . . 10 (𝑥 = 𝑡 → (2nd ‘(𝐹‘(𝐺𝑥))) = (2nd ‘(𝐹‘(𝐺𝑡))))
119118breq1d 4794 . . . . . . . . 9 (𝑥 = 𝑡 → ((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵 ↔ (2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵))
120119, 118ifbieq1d 4246 . . . . . . . 8 (𝑥 = 𝑡 → if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) = if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵))
121 fveq2 6332 . . . . . . . 8 (𝑥 = 𝑡 → (𝑥) = (𝑡))
122120, 121eleq12d 2843 . . . . . . 7 (𝑥 = 𝑡 → (if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) ↔ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
123122cbvralv 3319 . . . . . 6 (∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) ↔ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡))
1242adantr 466 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴 ∈ ℝ)
1254adantr 466 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐵 ∈ ℝ)
1266adantr 466 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴𝐵)
127 ovolicc2.4 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
12830adantr 466 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
12912adantr 466 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
1301adantr 466 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → (𝐴[,]𝐵) ⊆ 𝑈)
13123adantr 466 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐺:𝑈⟶ℕ)
13260adantlr 686 . . . . . . . . 9 (((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) ∧ 𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
133 simprrl 758 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → :𝑇𝑇)
134 simprrr 759 . . . . . . . . . 10 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥))
135122rspccva 3457 . . . . . . . . . 10 ((∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) ∧ 𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡))
136134, 135sylan 561 . . . . . . . . 9 (((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) ∧ 𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡))
137 simprlr 757 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴𝑧)
138 simprll 756 . . . . . . . . . 10 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝑧𝑈)
1398adantr 466 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴 ∈ (𝐴[,]𝐵))
140 inelcm 4173 . . . . . . . . . . 11 ((𝐴𝑧𝐴 ∈ (𝐴[,]𝐵)) → (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅)
141137, 139, 140syl2anc 565 . . . . . . . . . 10 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅)
142 ineq1 3956 . . . . . . . . . . . 12 (𝑢 = 𝑧 → (𝑢 ∩ (𝐴[,]𝐵)) = (𝑧 ∩ (𝐴[,]𝐵)))
143142neeq1d 3001 . . . . . . . . . . 11 (𝑢 = 𝑧 → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅))
144143, 16elrab2 3516 . . . . . . . . . 10 (𝑧𝑇 ↔ (𝑧𝑈 ∧ (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅))
145138, 141, 144sylanbrc 564 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝑧𝑇)
146 eqid 2770 . . . . . . . . 9 seq1(( ∘ 1st ), (ℕ × {𝑧})) = seq1(( ∘ 1st ), (ℕ × {𝑧}))
147 fveq2 6332 . . . . . . . . . . 11 (𝑚 = 𝑛 → (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚) = (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑛))
148147eleq2d 2835 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚) ↔ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑛)))
149148cbvrabv 3348 . . . . . . . . 9 {𝑚 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚)} = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑛)}
150 eqid 2770 . . . . . . . . 9 inf({𝑚 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚)}, ℝ, < ) = inf({𝑚 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚)}, ℝ, < )
151124, 125, 126, 127, 128, 129, 130, 131, 132, 16, 133, 136, 137, 145, 146, 149, 150ovolicc2lem4 23507 . . . . . . . 8 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
152151anassrs 458 . . . . . . 7 (((𝜑 ∧ (𝑧𝑈𝐴𝑧)) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥))) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
153152expr 444 . . . . . 6 (((𝜑 ∧ (𝑧𝑈𝐴𝑧)) ∧ :𝑇𝑇) → (∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
154123, 153syl5bir 233 . . . . 5 (((𝜑 ∧ (𝑧𝑈𝐴𝑧)) ∧ :𝑇𝑇) → (∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
155154expimpd 441 . . . 4 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → ((:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
156155exlimdv 2012 . . 3 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → (∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
157115, 156mpd 15 . 2 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
15811, 157rexlimddv 3182 1 (𝜑 → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wex 1851  wcel 2144  wne 2942  wral 3060  wrex 3061  {crab 3064  cin 3720  wss 3721  c0 4061  ifcif 4223  𝒫 cpw 4295  {csn 4314  cop 4320   cuni 4572   class class class wbr 4784   × cxp 5247  ran crn 5250  ccom 5253  wf 6027  cfv 6031  (class class class)co 6792  1st c1st 7312  2nd c2nd 7313  Fincfn 8108  supcsup 8501  infcinf 8502  cr 10136  1c1 10138   + caddc 10140  *cxr 10274   < clt 10275  cle 10276  cmin 10467  cn 11221  (,)cioo 12379  [,]cicc 12382  seqcseq 13007  abscabs 14181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-ioo 12383  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624
This theorem is referenced by:  ovolicc2  23509
  Copyright terms: Public domain W3C validator