MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2lem2 Structured version   Visualization version   GIF version

Theorem ovolicc2lem2 23507
Description: Lemma for ovolicc2 23511. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolicc2.5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolicc2.6 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
ovolicc2.7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
ovolicc2.8 (𝜑𝐺:𝑈⟶ℕ)
ovolicc2.9 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
ovolicc2.10 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
ovolicc2.11 (𝜑𝐻:𝑇𝑇)
ovolicc2.12 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐻𝑡))
ovolicc2.13 (𝜑𝐴𝐶)
ovolicc2.14 (𝜑𝐶𝑇)
ovolicc2.15 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶}))
ovolicc2.16 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾𝑛)}
Assertion
Ref Expression
ovolicc2lem2 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ ¬ 𝑁𝑊)) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵)
Distinct variable groups:   𝑡,𝑛,𝑢,𝐴   𝐵,𝑛,𝑡,𝑢   𝑡,𝐻   𝐶,𝑛,𝑡   𝑛,𝐹,𝑡   𝑛,𝐾,𝑡,𝑢   𝑛,𝐺,𝑡   𝑛,𝑊   𝜑,𝑛,𝑡   𝑇,𝑛,𝑡   𝑛,𝑁,𝑡,𝑢   𝑈,𝑛,𝑡,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐶(𝑢)   𝑆(𝑢,𝑡,𝑛)   𝑇(𝑢)   𝐹(𝑢)   𝐺(𝑢)   𝐻(𝑢,𝑛)   𝑊(𝑢,𝑡)

Proof of Theorem ovolicc2lem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovolicc.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
21adantr 472 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 𝐵 ∈ ℝ)
3 ovolicc2.5 . . . . . . . . 9 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4 inss2 3978 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
5 fss 6218 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ × ℝ))
63, 4, 5sylancl 697 . . . . . . . 8 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
76adantr 472 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
8 ovolicc2.8 . . . . . . . . 9 (𝜑𝐺:𝑈⟶ℕ)
98adantr 472 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → 𝐺:𝑈⟶ℕ)
10 nnuz 11937 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
11 ovolicc2.15 . . . . . . . . . . . 12 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶}))
12 1zzd 11621 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
13 ovolicc2.14 . . . . . . . . . . . 12 (𝜑𝐶𝑇)
14 ovolicc2.11 . . . . . . . . . . . 12 (𝜑𝐻:𝑇𝑇)
1510, 11, 12, 13, 14algrf 15509 . . . . . . . . . . 11 (𝜑𝐾:ℕ⟶𝑇)
1615ffvelrnda 6524 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → (𝐾𝑁) ∈ 𝑇)
17 ineq1 3951 . . . . . . . . . . . 12 (𝑢 = (𝐾𝑁) → (𝑢 ∩ (𝐴[,]𝐵)) = ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
1817neeq1d 2992 . . . . . . . . . . 11 (𝑢 = (𝐾𝑁) → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
19 ovolicc2.10 . . . . . . . . . . 11 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
2018, 19elrab2 3508 . . . . . . . . . 10 ((𝐾𝑁) ∈ 𝑇 ↔ ((𝐾𝑁) ∈ 𝑈 ∧ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
2116, 20sylib 208 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → ((𝐾𝑁) ∈ 𝑈 ∧ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
2221simpld 477 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (𝐾𝑁) ∈ 𝑈)
239, 22ffvelrnd 6525 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (𝐺‘(𝐾𝑁)) ∈ ℕ)
247, 23ffvelrnd 6525 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝐺‘(𝐾𝑁))) ∈ (ℝ × ℝ))
25 xp2nd 7368 . . . . . 6 ((𝐹‘(𝐺‘(𝐾𝑁))) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
2624, 25syl 17 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
272, 26ltnled 10397 . . . 4 ((𝜑𝑁 ∈ ℕ) → (𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ↔ ¬ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵))
28 simprl 811 . . . . . 6 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝑁 ∈ ℕ)
291adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝐵 ∈ ℝ)
3021adantrr 755 . . . . . . . . . 10 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → ((𝐾𝑁) ∈ 𝑈 ∧ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅))
3130simprd 482 . . . . . . . . 9 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅)
32 n0 4075 . . . . . . . . 9 (((𝐾𝑁) ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
3331, 32sylib 208 . . . . . . . 8 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → ∃𝑥 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
34 xp1st 7367 . . . . . . . . . . . 12 ((𝐹‘(𝐺‘(𝐾𝑁))) ∈ (ℝ × ℝ) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
3524, 34syl 17 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℕ) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
3635adantrr 755 . . . . . . . . . 10 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
3736adantr 472 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ∈ ℝ)
38 simpr 479 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)))
39 elin 3940 . . . . . . . . . . . . 13 (𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵)) ↔ (𝑥 ∈ (𝐾𝑁) ∧ 𝑥 ∈ (𝐴[,]𝐵)))
4038, 39sylib 208 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ (𝐾𝑁) ∧ 𝑥 ∈ (𝐴[,]𝐵)))
4140simprd 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐵))
42 ovolicc.1 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
43 elicc2 12452 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4442, 1, 43syl2anc 696 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4544ad2antrr 764 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4641, 45mpbid 222 . . . . . . . . . 10 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
4746simp1d 1137 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ)
481ad2antrr 764 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝐵 ∈ ℝ)
4940simpld 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐾𝑁))
5030simpld 477 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (𝐾𝑁) ∈ 𝑈)
51 ovolicc.3 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
52 ovolicc2.4 . . . . . . . . . . . . . 14 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
53 ovolicc2.6 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
54 ovolicc2.7 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
55 ovolicc2.9 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
5642, 1, 51, 52, 3, 53, 54, 8, 55ovolicc2lem1 23506 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐾𝑁) ∈ 𝑈) → (𝑥 ∈ (𝐾𝑁) ↔ (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
5750, 56syldan 488 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (𝑥 ∈ (𝐾𝑁) ↔ (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
5857adantr 472 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ (𝐾𝑁) ↔ (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
5949, 58mpbid 222 . . . . . . . . . 10 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥𝑥 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁))))))
6059simp2d 1138 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝑥)
6146simp3d 1139 . . . . . . . . 9 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → 𝑥𝐵)
6237, 47, 48, 60, 61ltletrd 10410 . . . . . . . 8 (((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) ∧ 𝑥 ∈ ((𝐾𝑁) ∩ (𝐴[,]𝐵))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵)
6333, 62exlimddv 2013 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵)
64 simprr 813 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))
6542, 1, 51, 52, 3, 53, 54, 8, 55ovolicc2lem1 23506 . . . . . . . 8 ((𝜑 ∧ (𝐾𝑁) ∈ 𝑈) → (𝐵 ∈ (𝐾𝑁) ↔ (𝐵 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
6650, 65syldan 488 . . . . . . 7 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → (𝐵 ∈ (𝐾𝑁) ↔ (𝐵 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾𝑁)))) < 𝐵𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))))
6729, 63, 64, 66mpbir3and 1428 . . . . . 6 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝐵 ∈ (𝐾𝑁))
68 fveq2 6354 . . . . . . . 8 (𝑛 = 𝑁 → (𝐾𝑛) = (𝐾𝑁))
6968eleq2d 2826 . . . . . . 7 (𝑛 = 𝑁 → (𝐵 ∈ (𝐾𝑛) ↔ 𝐵 ∈ (𝐾𝑁)))
70 ovolicc2.16 . . . . . . 7 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾𝑛)}
7169, 70elrab2 3508 . . . . . 6 (𝑁𝑊 ↔ (𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝐾𝑁)))
7228, 67, 71sylanbrc 701 . . . . 5 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ 𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))) → 𝑁𝑊)
7372expr 644 . . . 4 ((𝜑𝑁 ∈ ℕ) → (𝐵 < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) → 𝑁𝑊))
7427, 73sylbird 250 . . 3 ((𝜑𝑁 ∈ ℕ) → (¬ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵𝑁𝑊))
7574con1d 139 . 2 ((𝜑𝑁 ∈ ℕ) → (¬ 𝑁𝑊 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵))
7675impr 650 1 ((𝜑 ∧ (𝑁 ∈ ℕ ∧ ¬ 𝑁𝑊)) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2140  wne 2933  {crab 3055  cin 3715  wss 3716  c0 4059  ifcif 4231  𝒫 cpw 4303  {csn 4322   cuni 4589   class class class wbr 4805   × cxp 5265  ran crn 5268  ccom 5271  wf 6046  cfv 6050  (class class class)co 6815  1st c1st 7333  2nd c2nd 7334  Fincfn 8124  cr 10148  1c1 10150   + caddc 10152   < clt 10287  cle 10288  cmin 10479  cn 11233  (,)cioo 12389  [,]cicc 12392  seqcseq 13016  abscabs 14194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-n0 11506  df-z 11591  df-uz 11901  df-ioo 12393  df-icc 12396  df-fz 12541  df-seq 13017
This theorem is referenced by:  ovolicc2lem3  23508  ovolicc2lem4  23509
  Copyright terms: Public domain W3C validator