Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc Structured version   Visualization version   GIF version

Theorem ovolicc 23511
 Description: The measure of a closed interval. (Contributed by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
ovolicc ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴))

Proof of Theorem ovolicc
Dummy variables 𝑓 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ)
2 simp2 1132 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ)
3 simp3 1133 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴𝐵)
4 eqeq1 2764 . . . . 5 (𝑚 = 𝑛 → (𝑚 = 1 ↔ 𝑛 = 1))
54ifbid 4252 . . . 4 (𝑚 = 𝑛 → if(𝑚 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩) = if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
65cbvmptv 4902 . . 3 (𝑚 ∈ ℕ ↦ if(𝑚 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩)) = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, ⟨𝐴, 𝐵⟩, ⟨0, 0⟩))
71, 2, 3, 6ovolicc1 23504 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵𝐴))
8 eqeq1 2764 . . . . . 6 (𝑧 = 𝑦 → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
98anbi2d 742 . . . . 5 (𝑧 = 𝑦 → (((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
109rexbidv 3190 . . . 4 (𝑧 = 𝑦 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
1110cbvrabv 3339 . . 3 {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
121, 2, 3, 11ovolicc2 23510 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐵𝐴) ≤ (vol*‘(𝐴[,]𝐵)))
13 iccssre 12468 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
141, 2, 13syl2anc 696 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
15 ovolcl 23466 . . . 4 ((𝐴[,]𝐵) ⊆ ℝ → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*)
1614, 15syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) ∈ ℝ*)
172, 1resubcld 10670 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐵𝐴) ∈ ℝ)
1817rexrd 10301 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐵𝐴) ∈ ℝ*)
19 xrletri3 12198 . . 3 (((vol*‘(𝐴[,]𝐵)) ∈ ℝ* ∧ (𝐵𝐴) ∈ ℝ*) → ((vol*‘(𝐴[,]𝐵)) = (𝐵𝐴) ↔ ((vol*‘(𝐴[,]𝐵)) ≤ (𝐵𝐴) ∧ (𝐵𝐴) ≤ (vol*‘(𝐴[,]𝐵)))))
2016, 18, 19syl2anc 696 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((vol*‘(𝐴[,]𝐵)) = (𝐵𝐴) ↔ ((vol*‘(𝐴[,]𝐵)) ≤ (𝐵𝐴) ∧ (𝐵𝐴) ≤ (vol*‘(𝐴[,]𝐵)))))
217, 12, 20mpbir2and 995 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∃wrex 3051  {crab 3054   ∩ cin 3714   ⊆ wss 3715  ifcif 4230  ⟨cop 4327  ∪ cuni 4588   class class class wbr 4804   ↦ cmpt 4881   × cxp 5264  ran crn 5267   ∘ ccom 5270  ‘cfv 6049  (class class class)co 6814   ↑𝑚 cmap 8025  supcsup 8513  ℝcr 10147  0cc0 10148  1c1 10149   + caddc 10151  ℝ*cxr 10285   < clt 10286   ≤ cle 10287   − cmin 10478  ℕcn 11232  (,)cioo 12388  [,]cicc 12391  seqcseq 13015  abscabs 14193  vol*covol 23451 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-sum 14636  df-rest 16305  df-topgen 16326  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-top 20921  df-topon 20938  df-bases 20972  df-cmp 21412  df-ovol 23453 This theorem is referenced by:  ovolicopnf  23512  iccvolcl  23555  ovolioo  23556  dyadovol  23581  volcn  23594  vitalilem4  23599  vitalilem5  23600  ftc1a  24019  areacirc  33836  arearect  38321  areaquad  38322  volicc  40736
 Copyright terms: Public domain W3C validator