MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfioo Structured version   Visualization version   GIF version

Theorem ovolfioo 23436
Description: Unpack the interval covering property of the outer measure definition. (Contributed by Mario Carneiro, 16-Mar-2014.)
Assertion
Ref Expression
ovolfioo ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
Distinct variable groups:   𝑧,𝑛,𝐴   𝑛,𝐹,𝑧

Proof of Theorem ovolfioo
StepHypRef Expression
1 ioof 12464 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 inss2 3977 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
3 rexpssxrxp 10276 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
42, 3sstri 3753 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
5 fss 6217 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
64, 5mpan2 709 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
7 fco 6219 . . . . . 6 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
81, 6, 7sylancr 698 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
9 ffn 6206 . . . . 5 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → ((,) ∘ 𝐹) Fn ℕ)
10 fniunfv 6668 . . . . 5 (((,) ∘ 𝐹) Fn ℕ → 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ran ((,) ∘ 𝐹))
118, 9, 103syl 18 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ran ((,) ∘ 𝐹))
1211sseq2d 3774 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ((,) ∘ 𝐹)))
1312adantl 473 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ((,) ∘ 𝐹)))
14 dfss3 3733 . . 3 (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛))
15 ssel2 3739 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
16 eliun 4676 . . . . . . 7 (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑧 ∈ (((,) ∘ 𝐹)‘𝑛))
17 fvco3 6437 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
18 ffvelrn 6520 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
192, 18sseldi 3742 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℝ × ℝ))
20 1st2nd2 7372 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (ℝ × ℝ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2119, 20syl 17 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2221fveq2d 6356 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
23 df-ov 6816 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2422, 23syl6eqr 2812 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
2517, 24eqtrd 2794 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
2625eleq2d 2825 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ 𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛)))))
27 ovolfcl 23435 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
28 rexr 10277 . . . . . . . . . . . . . . 15 ((1st ‘(𝐹𝑛)) ∈ ℝ → (1st ‘(𝐹𝑛)) ∈ ℝ*)
29 rexr 10277 . . . . . . . . . . . . . . 15 ((2nd ‘(𝐹𝑛)) ∈ ℝ → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
30 elioo1 12408 . . . . . . . . . . . . . . 15 (((1st ‘(𝐹𝑛)) ∈ ℝ* ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ*) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ (1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
3128, 29, 30syl2an 495 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ (1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
32 3anass 1081 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ* ∧ (1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
3331, 32syl6bb 276 . . . . . . . . . . . . 13 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
34333adant3 1127 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
3527, 34syl 17 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
3626, 35bitrd 268 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
3736adantll 752 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
38 rexr 10277 . . . . . . . . . . 11 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
3938ad2antrr 764 . . . . . . . . . 10 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℝ*)
4039biantrurd 530 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
4137, 40bitr4d 271 . . . . . . . 8 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4241rexbidva 3187 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∃𝑛 ∈ ℕ 𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4316, 42syl5bb 272 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4415, 43sylan 489 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4544an32s 881 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑧𝐴) → (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4645ralbidva 3123 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4714, 46syl5bb 272 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4813, 47bitr3d 270 1 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051  cin 3714  wss 3715  𝒫 cpw 4302  cop 4327   cuni 4588   ciun 4672   class class class wbr 4804   × cxp 5264  ran crn 5267  ccom 5270   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6813  1st c1st 7331  2nd c2nd 7332  cr 10127  *cxr 10265   < clt 10266  cle 10267  cn 11212  (,)cioo 12368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-pre-lttri 10202  ax-pre-lttrn 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-ioo 12372
This theorem is referenced by:  ovollb2lem  23456  ovolunlem1  23465  ovoliunlem2  23471  ovolshftlem1  23477  ovolscalem1  23481  ioombl1lem4  23529
  Copyright terms: Public domain W3C validator