MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolficc Structured version   Visualization version   GIF version

Theorem ovolficc 23456
Description: Unpack the interval covering property using closed intervals. (Contributed by Mario Carneiro, 16-Mar-2014.)
Assertion
Ref Expression
ovolficc ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
Distinct variable groups:   𝑧,𝑛,𝐴   𝑛,𝐹,𝑧

Proof of Theorem ovolficc
StepHypRef Expression
1 iccf 12478 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
2 inss2 3982 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
3 rexpssxrxp 10290 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
42, 3sstri 3761 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
5 fss 6197 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
64, 5mpan2 671 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
7 fco 6199 . . . . . 6 (([,]:(ℝ* × ℝ*)⟶𝒫 ℝ*𝐹:ℕ⟶(ℝ* × ℝ*)) → ([,] ∘ 𝐹):ℕ⟶𝒫 ℝ*)
81, 6, 7sylancr 575 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ([,] ∘ 𝐹):ℕ⟶𝒫 ℝ*)
9 ffn 6184 . . . . 5 (([,] ∘ 𝐹):ℕ⟶𝒫 ℝ* → ([,] ∘ 𝐹) Fn ℕ)
10 fniunfv 6651 . . . . 5 (([,] ∘ 𝐹) Fn ℕ → 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) = ran ([,] ∘ 𝐹))
118, 9, 103syl 18 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) = ran ([,] ∘ 𝐹))
1211sseq2d 3782 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ([,] ∘ 𝐹)))
1312adantl 467 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ([,] ∘ 𝐹)))
14 dfss3 3741 . . 3 (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛))
15 ssel2 3747 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
16 eliun 4659 . . . . . . 7 (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑧 ∈ (([,] ∘ 𝐹)‘𝑛))
17 fvco3 6419 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑛) = ([,]‘(𝐹𝑛)))
18 ffvelrn 6502 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
192, 18sseldi 3750 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℝ × ℝ))
20 1st2nd2 7358 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (ℝ × ℝ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2119, 20syl 17 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2221fveq2d 6337 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ([,]‘(𝐹𝑛)) = ([,]‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
23 df-ov 6799 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) = ([,]‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2422, 23syl6eqr 2823 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ([,]‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))))
2517, 24eqtrd 2805 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))))
2625eleq2d 2836 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ 𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛)))))
27 ovolfcl 23454 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
28 elicc2 12443 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
29 3anass 1080 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
3028, 29syl6bb 276 . . . . . . . . . . . . 13 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
31303adant3 1126 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3227, 31syl 17 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3326, 32bitrd 268 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3433adantll 693 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
35 simpll 750 . . . . . . . . . 10 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℝ)
3635biantrurd 522 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3734, 36bitr4d 271 . . . . . . . 8 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
3837rexbidva 3197 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∃𝑛 ∈ ℕ 𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
3916, 38syl5bb 272 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4015, 39sylan 569 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4140an32s 631 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑧𝐴) → (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4241ralbidva 3134 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4314, 42syl5bb 272 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4413, 43bitr3d 270 1 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wrex 3062  cin 3722  wss 3723  𝒫 cpw 4298  cop 4323   cuni 4575   ciun 4655   class class class wbr 4787   × cxp 5248  ran crn 5251  ccom 5254   Fn wfn 6025  wf 6026  cfv 6030  (class class class)co 6796  1st c1st 7317  2nd c2nd 7318  cr 10141  *cxr 10279  cle 10281  cn 11226  [,]cicc 12383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-pre-lttri 10216  ax-pre-lttrn 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-icc 12387
This theorem is referenced by:  ovollb2lem  23476  ovolctb  23478  ovolicc1  23504  ioombl1lem4  23549
  Copyright terms: Public domain W3C validator