Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnovollem2 Structured version   Visualization version   GIF version

Theorem ovnovollem2 41346
Description: if 𝐼 is a cover of (𝐵𝑚 {𝐴}) in ℝ^1, then 𝐹 is the corresponding cover in the reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnovollem2.a (𝜑𝐴𝑉)
ovnovollem2.b (𝜑𝐵𝑊)
ovnovollem2.i (𝜑𝐼 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ))
ovnovollem2.s (𝜑 → (𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
ovnovollem2.z (𝜑𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
ovnovollem2.f 𝐹 = (𝑗 ∈ ℕ ↦ ((𝐼𝑗)‘𝐴))
Assertion
Ref Expression
ovnovollem2 (𝜑 → ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑓   𝑓,𝐹   𝑗,𝐹,𝑘   𝑘,𝐼   𝑘,𝑉   𝑓,𝑍   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑗,𝑘)   𝐼(𝑓,𝑗)   𝑉(𝑓,𝑗)   𝑊(𝑓,𝑗,𝑘)   𝑍(𝑗,𝑘)

Proof of Theorem ovnovollem2
StepHypRef Expression
1 ovnovollem2.i . . . . . . . . 9 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ))
2 elmapi 8033 . . . . . . . . 9 (𝐼 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ) → 𝐼:ℕ⟶((ℝ × ℝ) ↑𝑚 {𝐴}))
31, 2syl 17 . . . . . . . 8 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑𝑚 {𝐴}))
43adantr 472 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝐼:ℕ⟶((ℝ × ℝ) ↑𝑚 {𝐴}))
5 simpr 479 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
64, 5ffvelrnd 6511 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) ∈ ((ℝ × ℝ) ↑𝑚 {𝐴}))
7 elmapi 8033 . . . . . 6 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑𝑚 {𝐴}) → (𝐼𝑗):{𝐴}⟶(ℝ × ℝ))
86, 7syl 17 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):{𝐴}⟶(ℝ × ℝ))
9 ovnovollem2.a . . . . . . 7 (𝜑𝐴𝑉)
10 snidg 4339 . . . . . . 7 (𝐴𝑉𝐴 ∈ {𝐴})
119, 10syl 17 . . . . . 6 (𝜑𝐴 ∈ {𝐴})
1211adantr 472 . . . . 5 ((𝜑𝑗 ∈ ℕ) → 𝐴 ∈ {𝐴})
138, 12ffvelrnd 6511 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝐼𝑗)‘𝐴) ∈ (ℝ × ℝ))
14 ovnovollem2.f . . . 4 𝐹 = (𝑗 ∈ ℕ ↦ ((𝐼𝑗)‘𝐴))
1513, 14fmptd 6536 . . 3 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
16 reex 10190 . . . . . 6 ℝ ∈ V
1716, 16xpex 7115 . . . . 5 (ℝ × ℝ) ∈ V
18 nnex 11189 . . . . 5 ℕ ∈ V
1917, 18elmap 8040 . . . 4 (𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ↔ 𝐹:ℕ⟶(ℝ × ℝ))
2019a1i 11 . . 3 (𝜑 → (𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ↔ 𝐹:ℕ⟶(ℝ × ℝ)))
2115, 20mpbird 247 . 2 (𝜑𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ))
22 ovnovollem2.s . . . . . 6 (𝜑 → (𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
23 elsni 4326 . . . . . . . . . . . . 13 (𝑘 ∈ {𝐴} → 𝑘 = 𝐴)
2423fveq2d 6344 . . . . . . . . . . . 12 (𝑘 ∈ {𝐴} → (([,) ∘ (𝐼𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝐴))
2524adantl 473 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝐴))
26 elmapfun 8035 . . . . . . . . . . . . . 14 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑𝑚 {𝐴}) → Fun (𝐼𝑗))
276, 26syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → Fun (𝐼𝑗))
28 fdm 6200 . . . . . . . . . . . . . . . 16 ((𝐼𝑗):{𝐴}⟶(ℝ × ℝ) → dom (𝐼𝑗) = {𝐴})
298, 28syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → dom (𝐼𝑗) = {𝐴})
3029eqcomd 2754 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → {𝐴} = dom (𝐼𝑗))
3112, 30eleqtrd 2829 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → 𝐴 ∈ dom (𝐼𝑗))
32 fvco 6424 . . . . . . . . . . . . 13 ((Fun (𝐼𝑗) ∧ 𝐴 ∈ dom (𝐼𝑗)) → (([,) ∘ (𝐼𝑗))‘𝐴) = ([,)‘((𝐼𝑗)‘𝐴)))
3327, 31, 32syl2anc 696 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = ([,)‘((𝐼𝑗)‘𝐴)))
3433adantr 472 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝐴) = ([,)‘((𝐼𝑗)‘𝐴)))
35 id 22 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
36 fvexd 6352 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → ((𝐼𝑗)‘𝐴) ∈ V)
3714fvmpt2 6441 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ ((𝐼𝑗)‘𝐴) ∈ V) → (𝐹𝑗) = ((𝐼𝑗)‘𝐴))
3835, 36, 37syl2anc 696 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → (𝐹𝑗) = ((𝐼𝑗)‘𝐴))
3938eqcomd 2754 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → ((𝐼𝑗)‘𝐴) = (𝐹𝑗))
4039fveq2d 6344 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ([,)‘((𝐼𝑗)‘𝐴)) = ([,)‘(𝐹𝑗)))
4140adantl 473 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ([,)‘((𝐼𝑗)‘𝐴)) = ([,)‘(𝐹𝑗)))
4215ffund 6198 . . . . . . . . . . . . . . . 16 (𝜑 → Fun 𝐹)
4342adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → Fun 𝐹)
4414, 13dmmptd 6173 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom 𝐹 = ℕ)
4544eqcomd 2754 . . . . . . . . . . . . . . . . 17 (𝜑 → ℕ = dom 𝐹)
4645adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ℕ = dom 𝐹)
475, 46eleqtrd 2829 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ dom 𝐹)
48 fvco 6424 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑗 ∈ dom 𝐹) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
4943, 47, 48syl2anc 696 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
5049eqcomd 2754 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ([,)‘(𝐹𝑗)) = (([,) ∘ 𝐹)‘𝑗))
5141, 50eqtrd 2782 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ([,)‘((𝐼𝑗)‘𝐴)) = (([,) ∘ 𝐹)‘𝑗))
5251adantr 472 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘((𝐼𝑗)‘𝐴)) = (([,) ∘ 𝐹)‘𝑗))
5325, 34, 523eqtrd 2786 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = (([,) ∘ 𝐹)‘𝑗))
5453ixpeq2dva 8077 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ 𝐹)‘𝑗))
55 snex 5045 . . . . . . . . . . 11 {𝐴} ∈ V
56 fvex 6350 . . . . . . . . . . 11 (([,) ∘ 𝐹)‘𝑗) ∈ V
5755, 56ixpconst 8072 . . . . . . . . . 10 X𝑘 ∈ {𝐴} (([,) ∘ 𝐹)‘𝑗) = ((([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴})
5857a1i 11 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ 𝐹)‘𝑗) = ((([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴}))
5954, 58eqtrd 2782 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = ((([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴}))
6059iuneq2dv 4682 . . . . . . 7 (𝜑 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = 𝑗 ∈ ℕ ((([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴}))
61 nfv 1980 . . . . . . . 8 𝑗𝜑
6218a1i 11 . . . . . . . 8 (𝜑 → ℕ ∈ V)
63 fvexd 6352 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) ∈ V)
6461, 62, 63, 9iunmapsn 39877 . . . . . . 7 (𝜑 𝑗 ∈ ℕ ((([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴}) = ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴}))
6560, 64eqtrd 2782 . . . . . 6 (𝜑 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴}))
6622, 65sseqtrd 3770 . . . . 5 (𝜑 → (𝐵𝑚 {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴}))
67 ovnovollem2.b . . . . . 6 (𝜑𝐵𝑊)
6818, 56iunex 7300 . . . . . . 7 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V
6968a1i 11 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V)
7055a1i 11 . . . . . 6 (𝜑 → {𝐴} ∈ V)
71 ne0i 4052 . . . . . . 7 (𝐴 ∈ {𝐴} → {𝐴} ≠ ∅)
7211, 71syl 17 . . . . . 6 (𝜑 → {𝐴} ≠ ∅)
7367, 69, 70, 72mapss2 39865 . . . . 5 (𝜑 → (𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↔ (𝐵𝑚 {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴})))
7466, 73mpbird 247 . . . 4 (𝜑𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗))
75 icof 39879 . . . . . . . 8 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
7675a1i 11 . . . . . . 7 (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
77 rexpssxrxp 10247 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
7877a1i 11 . . . . . . 7 (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
7976, 78, 15fcoss 39870 . . . . . 6 (𝜑 → ([,) ∘ 𝐹):ℕ⟶𝒫 ℝ*)
8079ffnd 6195 . . . . 5 (𝜑 → ([,) ∘ 𝐹) Fn ℕ)
81 fniunfv 6656 . . . . 5 (([,) ∘ 𝐹) Fn ℕ → 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
8280, 81syl 17 . . . 4 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
8374, 82sseqtrd 3770 . . 3 (𝜑𝐵 ran ([,) ∘ 𝐹))
84 ovnovollem2.z . . . 4 (𝜑𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
85 nfcv 2890 . . . . . . 7 𝑗𝐹
86 ressxr 10246 . . . . . . . . . 10 ℝ ⊆ ℝ*
87 xpss2 5273 . . . . . . . . . 10 (ℝ ⊆ ℝ* → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
8886, 87ax-mp 5 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ × ℝ*)
8988a1i 11 . . . . . . . 8 (𝜑 → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
9015, 89fssd 6206 . . . . . . 7 (𝜑𝐹:ℕ⟶(ℝ × ℝ*))
9185, 90volicofmpt 40686 . . . . . 6 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))))
929adantr 472 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝐴𝑉)
93 fvexd 6352 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → ((𝐼𝑗)‘𝐴) ∈ V)
945, 93, 37syl2anc 696 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = ((𝐼𝑗)‘𝐴))
9594, 13eqeltrd 2827 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ (ℝ × ℝ))
96 1st2nd2 7360 . . . . . . . . . . . . . . . 16 ((𝐹𝑗) ∈ (ℝ × ℝ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
9795, 96syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
9897fveq2d 6344 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘(𝐹𝑗)) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩))
99 df-ov 6804 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
10099eqcomi 2757 . . . . . . . . . . . . . . 15 ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))
101100a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
10249, 98, 1013eqtrd 2786 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
10333, 51, 1023eqtrd 2786 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
104103fveq2d 6344 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) = (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))))
105 xp1st 7353 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
10695, 105syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
107 xp2nd 7354 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
10895, 107syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
109 volicore 41270 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑗)) ∈ ℝ ∧ (2nd ‘(𝐹𝑗)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
110106, 108, 109syl2anc 696 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
111104, 110eqeltrd 2827 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℝ)
112111recnd 10231 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ)
113 fveq2 6340 . . . . . . . . . . 11 (𝑘 = 𝐴 → (([,) ∘ (𝐼𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝐴))
114113fveq2d 6344 . . . . . . . . . 10 (𝑘 = 𝐴 → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
115114prodsn 14862 . . . . . . . . 9 ((𝐴𝑉 ∧ (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
11692, 112, 115syl2anc 696 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
117116, 104eqtr2d 2783 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
118117mpteq2dva 4884 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
11991, 118eqtrd 2782 . . . . 5 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
120119fveq2d 6344 . . . 4 (𝜑 → (Σ^‘((vol ∘ [,)) ∘ 𝐹)) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
12184, 120eqtr4d 2785 . . 3 (𝜑𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
12283, 121jca 555 . 2 (𝜑 → (𝐵 ran ([,) ∘ 𝐹) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹))))
123 coeq2 5424 . . . . . . 7 (𝑓 = 𝐹 → ([,) ∘ 𝑓) = ([,) ∘ 𝐹))
124123rneqd 5496 . . . . . 6 (𝑓 = 𝐹 → ran ([,) ∘ 𝑓) = ran ([,) ∘ 𝐹))
125124unieqd 4586 . . . . 5 (𝑓 = 𝐹 ran ([,) ∘ 𝑓) = ran ([,) ∘ 𝐹))
126125sseq2d 3762 . . . 4 (𝑓 = 𝐹 → (𝐵 ran ([,) ∘ 𝑓) ↔ 𝐵 ran ([,) ∘ 𝐹)))
127 coeq2 5424 . . . . . 6 (𝑓 = 𝐹 → ((vol ∘ [,)) ∘ 𝑓) = ((vol ∘ [,)) ∘ 𝐹))
128127fveq2d 6344 . . . . 5 (𝑓 = 𝐹 → (Σ^‘((vol ∘ [,)) ∘ 𝑓)) = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
129128eqeq2d 2758 . . . 4 (𝑓 = 𝐹 → (𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)) ↔ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹))))
130126, 129anbi12d 749 . . 3 (𝑓 = 𝐹 → ((𝐵 ran ([,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) ↔ (𝐵 ran ([,) ∘ 𝐹) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))))
131130rspcev 3437 . 2 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ (𝐵 ran ([,) ∘ 𝐹) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
13221, 122, 131syl2anc 696 1 (𝜑 → ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1620  wcel 2127  wne 2920  wrex 3039  Vcvv 3328  wss 3703  c0 4046  𝒫 cpw 4290  {csn 4309  cop 4315   cuni 4576   ciun 4660  cmpt 4869   × cxp 5252  dom cdm 5254  ran crn 5255  ccom 5258  Fun wfun 6031   Fn wfn 6032  wf 6033  cfv 6037  (class class class)co 6801  1st c1st 7319  2nd c2nd 7320  𝑚 cmap 8011  Xcixp 8062  cc 10097  cr 10098  *cxr 10236  cn 11183  [,)cico 12341  cprod 14805  volcvol 23403  Σ^csumge0 41051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7899  df-map 8013  df-pm 8014  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8470  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-z 11541  df-uz 11851  df-q 11953  df-rp 11997  df-xneg 12110  df-xadd 12111  df-xmul 12112  df-ioo 12343  df-ico 12345  df-icc 12346  df-fz 12491  df-fzo 12631  df-fl 12758  df-seq 12967  df-exp 13026  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-rlim 14390  df-sum 14587  df-prod 14806  df-rest 16256  df-topgen 16277  df-psmet 19911  df-xmet 19912  df-met 19913  df-bl 19914  df-mopn 19915  df-top 20872  df-topon 20889  df-bases 20923  df-cmp 21363  df-ovol 23404  df-vol 23405
This theorem is referenced by:  ovnovollem3  41347
  Copyright terms: Public domain W3C validator