Proof of Theorem ovnovollem1
Step | Hyp | Ref
| Expression |
1 | | eqidd 2652 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → {〈𝐴, (𝐹‘𝑗)〉} = {〈𝐴, (𝐹‘𝑗)〉}) |
2 | | ovnovollem1.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
3 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐴 ∈ 𝑉) |
4 | | ovnovollem1.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ ((ℝ × ℝ)
↑𝑚 ℕ)) |
5 | | elmapi 7921 |
. . . . . . . . . 10
⊢ (𝐹 ∈ ((ℝ ×
ℝ) ↑𝑚 ℕ) → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
6 | 4, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
7 | 6 | ffvelrnda 6399 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ (ℝ ×
ℝ)) |
8 | | fsng 6444 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝑗) ∈ (ℝ × ℝ)) →
({〈𝐴, (𝐹‘𝑗)〉}:{𝐴}⟶{(𝐹‘𝑗)} ↔ {〈𝐴, (𝐹‘𝑗)〉} = {〈𝐴, (𝐹‘𝑗)〉})) |
9 | 3, 7, 8 | syl2anc 694 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ({〈𝐴, (𝐹‘𝑗)〉}:{𝐴}⟶{(𝐹‘𝑗)} ↔ {〈𝐴, (𝐹‘𝑗)〉} = {〈𝐴, (𝐹‘𝑗)〉})) |
10 | 1, 9 | mpbird 247 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → {〈𝐴, (𝐹‘𝑗)〉}:{𝐴}⟶{(𝐹‘𝑗)}) |
11 | 7 | snssd 4372 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → {(𝐹‘𝑗)} ⊆ (ℝ ×
ℝ)) |
12 | 10, 11 | fssd 6095 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → {〈𝐴, (𝐹‘𝑗)〉}:{𝐴}⟶(ℝ ×
ℝ)) |
13 | | reex 10065 |
. . . . . . . 8
⊢ ℝ
∈ V |
14 | 13, 13 | xpex 7004 |
. . . . . . 7
⊢ (ℝ
× ℝ) ∈ V |
15 | 14 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (ℝ ×
ℝ) ∈ V) |
16 | | snex 4938 |
. . . . . . 7
⊢ {𝐴} ∈ V |
17 | 16 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → {𝐴} ∈ V) |
18 | 15, 17 | elmapd 7913 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ({〈𝐴, (𝐹‘𝑗)〉} ∈ ((ℝ × ℝ)
↑𝑚 {𝐴}) ↔ {〈𝐴, (𝐹‘𝑗)〉}:{𝐴}⟶(ℝ ×
ℝ))) |
19 | 12, 18 | mpbird 247 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → {〈𝐴, (𝐹‘𝑗)〉} ∈ ((ℝ × ℝ)
↑𝑚 {𝐴})) |
20 | | ovnovollem1.i |
. . . 4
⊢ 𝐼 = (𝑗 ∈ ℕ ↦ {〈𝐴, (𝐹‘𝑗)〉}) |
21 | 19, 20 | fmptd 6425 |
. . 3
⊢ (𝜑 → 𝐼:ℕ⟶((ℝ × ℝ)
↑𝑚 {𝐴})) |
22 | | ovexd 6720 |
. . . 4
⊢ (𝜑 → ((ℝ × ℝ)
↑𝑚 {𝐴}) ∈ V) |
23 | | nnex 11064 |
. . . . 5
⊢ ℕ
∈ V |
24 | 23 | a1i 11 |
. . . 4
⊢ (𝜑 → ℕ ∈
V) |
25 | 22, 24 | elmapd 7913 |
. . 3
⊢ (𝜑 → (𝐼 ∈ (((ℝ × ℝ)
↑𝑚 {𝐴}) ↑𝑚 ℕ)
↔ 𝐼:ℕ⟶((ℝ × ℝ)
↑𝑚 {𝐴}))) |
26 | 21, 25 | mpbird 247 |
. 2
⊢ (𝜑 → 𝐼 ∈ (((ℝ × ℝ)
↑𝑚 {𝐴}) ↑𝑚
ℕ)) |
27 | | ovnovollem1.s |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ ∪ ran
([,) ∘ 𝐹)) |
28 | | icof 39725 |
. . . . . . . . . . 11
⊢
[,):(ℝ* × ℝ*)⟶𝒫
ℝ* |
29 | 28 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → [,):(ℝ*
× ℝ*)⟶𝒫
ℝ*) |
30 | | rexpssxrxp 10122 |
. . . . . . . . . . 11
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) |
31 | 30 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ × ℝ)
⊆ (ℝ* × ℝ*)) |
32 | 29, 31, 6 | fcoss 39716 |
. . . . . . . . 9
⊢ (𝜑 → ([,) ∘ 𝐹):ℕ⟶𝒫
ℝ*) |
33 | 32 | ffnd 6084 |
. . . . . . . 8
⊢ (𝜑 → ([,) ∘ 𝐹) Fn ℕ) |
34 | | fniunfv 6545 |
. . . . . . . 8
⊢ (([,)
∘ 𝐹) Fn ℕ
→ ∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ∪ ran ([,)
∘ 𝐹)) |
35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ∪ ran ([,)
∘ 𝐹)) |
36 | 35 | eqcomd 2657 |
. . . . . 6
⊢ (𝜑 → ∪ ran ([,) ∘ 𝐹) = ∪
𝑗 ∈ ℕ (([,)
∘ 𝐹)‘𝑗)) |
37 | 27, 36 | sseqtrd 3674 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ ∪
𝑗 ∈ ℕ (([,)
∘ 𝐹)‘𝑗)) |
38 | | ovnovollem1.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
39 | | fvex 6239 |
. . . . . . . 8
⊢ (([,)
∘ 𝐹)‘𝑗) ∈ V |
40 | 23, 39 | iunex 7189 |
. . . . . . 7
⊢ ∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V |
41 | 40 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V) |
42 | 16 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝐴} ∈ V) |
43 | 2 | snn0d 39572 |
. . . . . 6
⊢ (𝜑 → {𝐴} ≠ ∅) |
44 | 38, 41, 42, 43 | mapss2 39711 |
. . . . 5
⊢ (𝜑 → (𝐵 ⊆ ∪
𝑗 ∈ ℕ (([,)
∘ 𝐹)‘𝑗) ↔ (𝐵 ↑𝑚 {𝐴}) ⊆ (∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴}))) |
45 | 37, 44 | mpbid 222 |
. . . 4
⊢ (𝜑 → (𝐵 ↑𝑚 {𝐴}) ⊆ (∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴})) |
46 | | nfv 1883 |
. . . . . . 7
⊢
Ⅎ𝑗𝜑 |
47 | | fvexd 6241 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ([,)‘(𝐹‘𝑗)) ∈ V) |
48 | 46, 24, 47, 2 | iunmapsn 39723 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (([,)‘(𝐹‘𝑗)) ↑𝑚 {𝐴}) = (∪ 𝑗 ∈ ℕ ([,)‘(𝐹‘𝑗)) ↑𝑚 {𝐴})) |
49 | 48 | eqcomd 2657 |
. . . . 5
⊢ (𝜑 → (∪ 𝑗 ∈ ℕ ([,)‘(𝐹‘𝑗)) ↑𝑚 {𝐴}) = ∪ 𝑗 ∈ ℕ (([,)‘(𝐹‘𝑗)) ↑𝑚 {𝐴})) |
50 | | elmapfun 7923 |
. . . . . . . . . 10
⊢ (𝐹 ∈ ((ℝ ×
ℝ) ↑𝑚 ℕ) → Fun 𝐹) |
51 | 4, 50 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝐹) |
52 | 51 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Fun 𝐹) |
53 | | simpr 476 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
54 | | fdm 6089 |
. . . . . . . . . . . 12
⊢ (𝐹:ℕ⟶(ℝ ×
ℝ) → dom 𝐹 =
ℕ) |
55 | 6, 54 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = ℕ) |
56 | 55 | eqcomd 2657 |
. . . . . . . . . 10
⊢ (𝜑 → ℕ = dom 𝐹) |
57 | 56 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ℕ = dom 𝐹) |
58 | 53, 57 | eleqtrd 2732 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ dom 𝐹) |
59 | | fvco 6313 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑗 ∈ dom 𝐹) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹‘𝑗))) |
60 | 52, 58, 59 | syl2anc 694 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹‘𝑗))) |
61 | 60 | iuneq2dv 4574 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ∪ 𝑗 ∈ ℕ
([,)‘(𝐹‘𝑗))) |
62 | 61 | oveq1d 6705 |
. . . . 5
⊢ (𝜑 → (∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴}) = (∪ 𝑗 ∈ ℕ ([,)‘(𝐹‘𝑗)) ↑𝑚 {𝐴})) |
63 | | ffun 6086 |
. . . . . . . . . . . . 13
⊢
({〈𝐴, (𝐹‘𝑗)〉}:{𝐴}⟶{(𝐹‘𝑗)} → Fun {〈𝐴, (𝐹‘𝑗)〉}) |
64 | 10, 63 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Fun {〈𝐴, (𝐹‘𝑗)〉}) |
65 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ) |
66 | | snex 4938 |
. . . . . . . . . . . . . . . 16
⊢
{〈𝐴, (𝐹‘𝑗)〉} ∈ V |
67 | 66 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ →
{〈𝐴, (𝐹‘𝑗)〉} ∈ V) |
68 | 20 | fvmpt2 6330 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ ℕ ∧
{〈𝐴, (𝐹‘𝑗)〉} ∈ V) → (𝐼‘𝑗) = {〈𝐴, (𝐹‘𝑗)〉}) |
69 | 65, 67, 68 | syl2anc 694 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → (𝐼‘𝑗) = {〈𝐴, (𝐹‘𝑗)〉}) |
70 | 69 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐼‘𝑗) = {〈𝐴, (𝐹‘𝑗)〉}) |
71 | 70 | funeqd 5948 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (Fun (𝐼‘𝑗) ↔ Fun {〈𝐴, (𝐹‘𝑗)〉})) |
72 | 64, 71 | mpbird 247 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Fun (𝐼‘𝑗)) |
73 | 72 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → Fun (𝐼‘𝑗)) |
74 | | simpr 476 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → 𝑘 ∈ {𝐴}) |
75 | 70 | dmeqd 5358 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → dom (𝐼‘𝑗) = dom {〈𝐴, (𝐹‘𝑗)〉}) |
76 | | fdm 6089 |
. . . . . . . . . . . . . . 15
⊢
({〈𝐴, (𝐹‘𝑗)〉}:{𝐴}⟶(ℝ × ℝ) →
dom {〈𝐴, (𝐹‘𝑗)〉} = {𝐴}) |
77 | 12, 76 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → dom {〈𝐴, (𝐹‘𝑗)〉} = {𝐴}) |
78 | 75, 77 | eqtrd 2685 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → dom (𝐼‘𝑗) = {𝐴}) |
79 | 78 | eleq2d 2716 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ dom (𝐼‘𝑗) ↔ 𝑘 ∈ {𝐴})) |
80 | 79 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (𝑘 ∈ dom (𝐼‘𝑗) ↔ 𝑘 ∈ {𝐴})) |
81 | 74, 80 | mpbird 247 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → 𝑘 ∈ dom (𝐼‘𝑗)) |
82 | | fvco 6313 |
. . . . . . . . . 10
⊢ ((Fun
(𝐼‘𝑗) ∧ 𝑘 ∈ dom (𝐼‘𝑗)) → (([,) ∘ (𝐼‘𝑗))‘𝑘) = ([,)‘((𝐼‘𝑗)‘𝑘))) |
83 | 73, 81, 82 | syl2anc 694 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼‘𝑗))‘𝑘) = ([,)‘((𝐼‘𝑗)‘𝑘))) |
84 | 69 | fveq1d 6231 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → ((𝐼‘𝑗)‘𝑘) = ({〈𝐴, (𝐹‘𝑗)〉}‘𝑘)) |
85 | 84 | ad2antlr 763 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ((𝐼‘𝑗)‘𝑘) = ({〈𝐴, (𝐹‘𝑗)〉}‘𝑘)) |
86 | | elsni 4227 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ {𝐴} → 𝑘 = 𝐴) |
87 | 86 | fveq2d 6233 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ {𝐴} → ({〈𝐴, (𝐹‘𝑗)〉}‘𝑘) = ({〈𝐴, (𝐹‘𝑗)〉}‘𝐴)) |
88 | 87 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ({〈𝐴, (𝐹‘𝑗)〉}‘𝑘) = ({〈𝐴, (𝐹‘𝑗)〉}‘𝐴)) |
89 | | fvexd 6241 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘𝑗) ∈ V) |
90 | | fvsng 6488 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝑗) ∈ V) → ({〈𝐴, (𝐹‘𝑗)〉}‘𝐴) = (𝐹‘𝑗)) |
91 | 2, 89, 90 | syl2anc 694 |
. . . . . . . . . . . 12
⊢ (𝜑 → ({〈𝐴, (𝐹‘𝑗)〉}‘𝐴) = (𝐹‘𝑗)) |
92 | 91 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ({〈𝐴, (𝐹‘𝑗)〉}‘𝐴) = (𝐹‘𝑗)) |
93 | 85, 88, 92 | 3eqtrd 2689 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ((𝐼‘𝑗)‘𝑘) = (𝐹‘𝑗)) |
94 | 93 | fveq2d 6233 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘((𝐼‘𝑗)‘𝑘)) = ([,)‘(𝐹‘𝑗))) |
95 | | eqidd 2652 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘(𝐹‘𝑗)) = ([,)‘(𝐹‘𝑗))) |
96 | 83, 94, 95 | 3eqtrd 2689 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼‘𝑗))‘𝑘) = ([,)‘(𝐹‘𝑗))) |
97 | 96 | ixpeq2dva 7965 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
{𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) = X𝑘 ∈ {𝐴} ([,)‘(𝐹‘𝑗))) |
98 | | fvex 6239 |
. . . . . . . . 9
⊢
([,)‘(𝐹‘𝑗)) ∈ V |
99 | 16, 98 | ixpconst 7960 |
. . . . . . . 8
⊢ X𝑘 ∈
{𝐴} ([,)‘(𝐹‘𝑗)) = (([,)‘(𝐹‘𝑗)) ↑𝑚 {𝐴}) |
100 | 99 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
{𝐴} ([,)‘(𝐹‘𝑗)) = (([,)‘(𝐹‘𝑗)) ↑𝑚 {𝐴})) |
101 | 97, 100 | eqtrd 2685 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
{𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) = (([,)‘(𝐹‘𝑗)) ↑𝑚 {𝐴})) |
102 | 101 | iuneq2dv 4574 |
. . . . 5
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ
(([,)‘(𝐹‘𝑗)) ↑𝑚
{𝐴})) |
103 | 49, 62, 102 | 3eqtr4d 2695 |
. . . 4
⊢ (𝜑 → (∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑𝑚 {𝐴}) = ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
104 | 45, 103 | sseqtrd 3674 |
. . 3
⊢ (𝜑 → (𝐵 ↑𝑚 {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
105 | | ovnovollem1.z |
. . . 4
⊢ (𝜑 → 𝑍 =
(Σ^‘((vol ∘ [,)) ∘ 𝐹))) |
106 | | nfcv 2793 |
. . . . . . 7
⊢
Ⅎ𝑗𝐹 |
107 | | ressxr 10121 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℝ* |
108 | | xpss2 5162 |
. . . . . . . . . 10
⊢ (ℝ
⊆ ℝ* → (ℝ × ℝ) ⊆ (ℝ
× ℝ*)) |
109 | 107, 108 | ax-mp 5 |
. . . . . . . . 9
⊢ (ℝ
× ℝ) ⊆ (ℝ × ℝ*) |
110 | 109 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (ℝ × ℝ)
⊆ (ℝ × ℝ*)) |
111 | 6, 110 | fssd 6095 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ×
ℝ*)) |
112 | 106, 111 | volicofmpt 40532 |
. . . . . 6
⊢ (𝜑 → ((vol ∘ [,)) ∘
𝐹) = (𝑗 ∈ ℕ ↦
(vol‘((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))))) |
113 | 69 | coeq2d 5317 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → ([,)
∘ (𝐼‘𝑗)) = ([,) ∘ {〈𝐴, (𝐹‘𝑗)〉})) |
114 | 113 | fveq1d 6231 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → (([,)
∘ (𝐼‘𝑗))‘𝐴) = (([,) ∘ {〈𝐴, (𝐹‘𝑗)〉})‘𝐴)) |
115 | 114 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (([,) ∘ (𝐼‘𝑗))‘𝐴) = (([,) ∘ {〈𝐴, (𝐹‘𝑗)〉})‘𝐴)) |
116 | | snidg 4239 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
117 | 2, 116 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
118 | | dmsnopg 5642 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑗) ∈ V → dom {〈𝐴, (𝐹‘𝑗)〉} = {𝐴}) |
119 | 89, 118 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → dom {〈𝐴, (𝐹‘𝑗)〉} = {𝐴}) |
120 | 117, 119 | eleqtrrd 2733 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ dom {〈𝐴, (𝐹‘𝑗)〉}) |
121 | 120 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐴 ∈ dom {〈𝐴, (𝐹‘𝑗)〉}) |
122 | | fvco 6313 |
. . . . . . . . . . . . . 14
⊢ ((Fun
{〈𝐴, (𝐹‘𝑗)〉} ∧ 𝐴 ∈ dom {〈𝐴, (𝐹‘𝑗)〉}) → (([,) ∘ {〈𝐴, (𝐹‘𝑗)〉})‘𝐴) = ([,)‘({〈𝐴, (𝐹‘𝑗)〉}‘𝐴))) |
123 | 64, 121, 122 | syl2anc 694 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (([,) ∘
{〈𝐴, (𝐹‘𝑗)〉})‘𝐴) = ([,)‘({〈𝐴, (𝐹‘𝑗)〉}‘𝐴))) |
124 | | fvexd 6241 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ V) |
125 | 3, 124, 90 | syl2anc 694 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ({〈𝐴, (𝐹‘𝑗)〉}‘𝐴) = (𝐹‘𝑗)) |
126 | | 1st2nd2 7249 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑗) ∈ (ℝ × ℝ) →
(𝐹‘𝑗) = 〈(1st ‘(𝐹‘𝑗)), (2nd ‘(𝐹‘𝑗))〉) |
127 | 7, 126 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = 〈(1st ‘(𝐹‘𝑗)), (2nd ‘(𝐹‘𝑗))〉) |
128 | 125, 127 | eqtrd 2685 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ({〈𝐴, (𝐹‘𝑗)〉}‘𝐴) = 〈(1st ‘(𝐹‘𝑗)), (2nd ‘(𝐹‘𝑗))〉) |
129 | 128 | fveq2d 6233 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
([,)‘({〈𝐴,
(𝐹‘𝑗)〉}‘𝐴)) = ([,)‘〈(1st
‘(𝐹‘𝑗)), (2nd
‘(𝐹‘𝑗))〉)) |
130 | | df-ov 6693 |
. . . . . . . . . . . . . . . 16
⊢
((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗))) = ([,)‘〈(1st
‘(𝐹‘𝑗)), (2nd
‘(𝐹‘𝑗))〉) |
131 | 130 | eqcomi 2660 |
. . . . . . . . . . . . . . 15
⊢
([,)‘〈(1st ‘(𝐹‘𝑗)), (2nd ‘(𝐹‘𝑗))〉) = ((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗))) |
132 | 131 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
([,)‘〈(1st ‘(𝐹‘𝑗)), (2nd ‘(𝐹‘𝑗))〉) = ((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) |
133 | 129, 132 | eqtrd 2685 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
([,)‘({〈𝐴,
(𝐹‘𝑗)〉}‘𝐴)) = ((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) |
134 | 115, 123,
133 | 3eqtrd 2689 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (([,) ∘ (𝐼‘𝑗))‘𝐴) = ((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) |
135 | 134 | fveq2d 6233 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘(([,)
∘ (𝐼‘𝑗))‘𝐴)) = (vol‘((1st
‘(𝐹‘𝑗))[,)(2nd
‘(𝐹‘𝑗))))) |
136 | | xp1st 7242 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑗) ∈ (ℝ × ℝ) →
(1st ‘(𝐹‘𝑗)) ∈ ℝ) |
137 | 7, 136 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (1st
‘(𝐹‘𝑗)) ∈
ℝ) |
138 | | xp2nd 7243 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑗) ∈ (ℝ × ℝ) →
(2nd ‘(𝐹‘𝑗)) ∈ ℝ) |
139 | 7, 138 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2nd
‘(𝐹‘𝑗)) ∈
ℝ) |
140 | | volicore 41116 |
. . . . . . . . . . . 12
⊢
(((1st ‘(𝐹‘𝑗)) ∈ ℝ ∧ (2nd
‘(𝐹‘𝑗)) ∈ ℝ) →
(vol‘((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) ∈ ℝ) |
141 | 137, 139,
140 | syl2anc 694 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(vol‘((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) ∈ ℝ) |
142 | 135, 141 | eqeltrd 2730 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘(([,)
∘ (𝐼‘𝑗))‘𝐴)) ∈ ℝ) |
143 | 142 | recnd 10106 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘(([,)
∘ (𝐼‘𝑗))‘𝐴)) ∈ ℂ) |
144 | | fveq2 6229 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐴 → (([,) ∘ (𝐼‘𝑗))‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝐴)) |
145 | 144 | fveq2d 6233 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐴 → (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼‘𝑗))‘𝐴))) |
146 | 145 | prodsn 14736 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (vol‘(([,) ∘ (𝐼‘𝑗))‘𝐴)) ∈ ℂ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼‘𝑗))‘𝐴))) |
147 | 3, 143, 146 | syl2anc 694 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼‘𝑗))‘𝐴))) |
148 | 147, 135 | eqtr2d 2686 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(vol‘((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))) |
149 | 148 | mpteq2dva 4777 |
. . . . . 6
⊢ (𝜑 → (𝑗 ∈ ℕ ↦
(vol‘((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗))))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))) |
150 | 112, 149 | eqtrd 2685 |
. . . . 5
⊢ (𝜑 → ((vol ∘ [,)) ∘
𝐹) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))) |
151 | 150 | fveq2d 6233 |
. . . 4
⊢ (𝜑 →
(Σ^‘((vol ∘ [,)) ∘ 𝐹)) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))))) |
152 | 105, 151 | eqtrd 2685 |
. . 3
⊢ (𝜑 → 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))))) |
153 | 104, 152 | jca 553 |
. 2
⊢ (𝜑 → ((𝐵 ↑𝑚 {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) ∧ 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))))) |
154 | | fveq1 6228 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → (𝑖‘𝑗) = (𝐼‘𝑗)) |
155 | 154 | coeq2d 5317 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → ([,) ∘ (𝑖‘𝑗)) = ([,) ∘ (𝐼‘𝑗))) |
156 | 155 | fveq1d 6231 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → (([,) ∘ (𝑖‘𝑗))‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
157 | 156 | ixpeq2dv 7966 |
. . . . . 6
⊢ (𝑖 = 𝐼 → X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
158 | 157 | iuneq2d 4579 |
. . . . 5
⊢ (𝑖 = 𝐼 → ∪
𝑗 ∈ ℕ X𝑘 ∈
{𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ X𝑘 ∈
{𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
159 | 158 | sseq2d 3666 |
. . . 4
⊢ (𝑖 = 𝐼 → ((𝐵 ↑𝑚 {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ↔ (𝐵 ↑𝑚 {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘))) |
160 | | simpl 472 |
. . . . . . . . . . . 12
⊢ ((𝑖 = 𝐼 ∧ 𝑘 ∈ {𝐴}) → 𝑖 = 𝐼) |
161 | 160 | fveq1d 6231 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝐼 ∧ 𝑘 ∈ {𝐴}) → (𝑖‘𝑗) = (𝐼‘𝑗)) |
162 | 161 | coeq2d 5317 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝐼 ∧ 𝑘 ∈ {𝐴}) → ([,) ∘ (𝑖‘𝑗)) = ([,) ∘ (𝐼‘𝑗))) |
163 | 162 | fveq1d 6231 |
. . . . . . . . 9
⊢ ((𝑖 = 𝐼 ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝑖‘𝑗))‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
164 | 163 | fveq2d 6233 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑘 ∈ {𝐴}) → (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))) |
165 | 164 | prodeq2dv 14697 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))) |
166 | 165 | mpteq2dv 4778 |
. . . . . 6
⊢ (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))) |
167 | 166 | fveq2d 6233 |
. . . . 5
⊢ (𝑖 = 𝐼 →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))))) |
168 | 167 | eqeq2d 2661 |
. . . 4
⊢ (𝑖 = 𝐼 → (𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ↔ 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))))) |
169 | 159, 168 | anbi12d 747 |
. . 3
⊢ (𝑖 = 𝐼 → (((𝐵 ↑𝑚 {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ ((𝐵 ↑𝑚 {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) ∧ 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))))))) |
170 | 169 | rspcev 3340 |
. 2
⊢ ((𝐼 ∈ (((ℝ ×
ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ) ∧
((𝐵
↑𝑚 {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) ∧ 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ)
↑𝑚 {𝐴}) ↑𝑚
ℕ)((𝐵
↑𝑚 {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
171 | 26, 153, 170 | syl2anc 694 |
1
⊢ (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ)
↑𝑚 {𝐴}) ↑𝑚
ℕ)((𝐵
↑𝑚 {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |