Step | Hyp | Ref
| Expression |
1 | | fveq2 6229 |
. . . . . 6
⊢ (𝑋 = ∅ →
(voln*‘𝑋) =
(voln*‘∅)) |
2 | 1 | fveq1d 6231 |
. . . . 5
⊢ (𝑋 = ∅ →
((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴)) |
3 | 2 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴)) |
4 | | ovnlecvr2.s |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
6 | | 1nn 11069 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ |
7 | | ne0i 3954 |
. . . . . . . . . . 11
⊢ (1 ∈
ℕ → ℕ ≠ ∅) |
8 | 6, 7 | ax-mp 5 |
. . . . . . . . . 10
⊢ ℕ
≠ ∅ |
9 | 8 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℕ ≠
∅) |
10 | | iunconst 4561 |
. . . . . . . . 9
⊢ (ℕ
≠ ∅ → ∪ 𝑗 ∈ ℕ {∅} =
{∅}) |
11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ {∅} =
{∅}) |
12 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∪ 𝑗 ∈ ℕ {∅} =
{∅}) |
13 | | ixpeq1 7961 |
. . . . . . . . . . 11
⊢ (𝑋 = ∅ → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ ∅ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
14 | | ixp0x 7978 |
. . . . . . . . . . . 12
⊢ X𝑘 ∈
∅ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = {∅} |
15 | 14 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑋 = ∅ → X𝑘 ∈
∅ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = {∅}) |
16 | 13, 15 | eqtrd 2685 |
. . . . . . . . . 10
⊢ (𝑋 = ∅ → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = {∅}) |
17 | 16 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑋 = ∅ ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = {∅}) |
18 | 17 | iuneq2dv 4574 |
. . . . . . . 8
⊢ (𝑋 = ∅ → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ
{∅}) |
19 | 18 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ
{∅}) |
20 | | reex 10065 |
. . . . . . . . 9
⊢ ℝ
∈ V |
21 | | mapdm0 7914 |
. . . . . . . . 9
⊢ (ℝ
∈ V → (ℝ ↑𝑚 ∅) =
{∅}) |
22 | 20, 21 | ax-mp 5 |
. . . . . . . 8
⊢ (ℝ
↑𝑚 ∅) = {∅} |
23 | 22 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ
↑𝑚 ∅) = {∅}) |
24 | 12, 19, 23 | 3eqtr4d 2695 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (ℝ ↑𝑚
∅)) |
25 | 5, 24 | sseqtrd 3674 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ⊆ (ℝ ↑𝑚
∅)) |
26 | 25 | ovn0val 41085 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = ∅) →
((voln*‘∅)‘𝐴) = 0) |
27 | 3, 26 | eqtrd 2685 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = 0) |
28 | | nfv 1883 |
. . . . 5
⊢
Ⅎ𝑗𝜑 |
29 | | nnex 11064 |
. . . . . 6
⊢ ℕ
∈ V |
30 | 29 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℕ ∈
V) |
31 | | icossicc 12298 |
. . . . . 6
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
32 | | ovnlecvr2.l |
. . . . . . 7
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
33 | | ovnlecvr2.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ Fin) |
34 | 33 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
35 | | ovnlecvr2.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ
↑𝑚 𝑋)) |
36 | 35 | ffvelrnda 6399 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑𝑚
𝑋)) |
37 | | elmapi 7921 |
. . . . . . . 8
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑𝑚
𝑋) → (𝐶‘𝑗):𝑋⟶ℝ) |
38 | 36, 37 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑋⟶ℝ) |
39 | | ovnlecvr2.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ
↑𝑚 𝑋)) |
40 | 39 | ffvelrnda 6399 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑𝑚
𝑋)) |
41 | | elmapi 7921 |
. . . . . . . 8
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑𝑚
𝑋) → (𝐷‘𝑗):𝑋⟶ℝ) |
42 | 40, 41 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑋⟶ℝ) |
43 | 32, 34, 38, 42 | hoidmvcl 41117 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
44 | 31, 43 | sseldi 3634 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
45 | 28, 30, 44 | sge0ge0mpt 40973 |
. . . 4
⊢ (𝜑 → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
46 | 45 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = ∅) → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
47 | 27, 46 | eqbrtrd 4707 |
. 2
⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
48 | | simpl 472 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝜑) |
49 | | neqne 2831 |
. . . 4
⊢ (¬
𝑋 = ∅ → 𝑋 ≠ ∅) |
50 | 49 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
51 | 33 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ∈ Fin) |
52 | | simpr 476 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅) |
53 | 38 | ffvelrnda 6399 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈ ℝ) |
54 | 42 | ffvelrnda 6399 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈ ℝ) |
55 | 54 | rexrd 10127 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈
ℝ*) |
56 | | icossre 12292 |
. . . . . . . . . . . . 13
⊢ ((((𝐶‘𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷‘𝑗)‘𝑘) ∈ ℝ*) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ) |
57 | 53, 55, 56 | syl2anc 694 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ) |
58 | 57 | ralrimiva 2995 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∀𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ) |
59 | | ss2ixp 7963 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ X𝑘 ∈ 𝑋 ℝ) |
60 | 58, 59 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ X𝑘 ∈ 𝑋 ℝ) |
61 | 20 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℝ ∈
V) |
62 | | ixpconstg 7959 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ Fin ∧ ℝ ∈
V) → X𝑘 ∈ 𝑋 ℝ = (ℝ
↑𝑚 𝑋)) |
63 | 33, 61, 62 | syl2anc 694 |
. . . . . . . . . . 11
⊢ (𝜑 → X𝑘 ∈
𝑋 ℝ = (ℝ
↑𝑚 𝑋)) |
64 | 63 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 ℝ = (ℝ
↑𝑚 𝑋)) |
65 | 60, 64 | sseqtrd 3674 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ (ℝ
↑𝑚 𝑋)) |
66 | 65 | ralrimiva 2995 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ (ℝ
↑𝑚 𝑋)) |
67 | | iunss 4593 |
. . . . . . . 8
⊢ (∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ (ℝ
↑𝑚 𝑋) ↔ ∀𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ (ℝ
↑𝑚 𝑋)) |
68 | 66, 67 | sylibr 224 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ (ℝ
↑𝑚 𝑋)) |
69 | 4, 68 | sstrd 3646 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑𝑚
𝑋)) |
70 | 69 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝐴 ⊆ (ℝ ↑𝑚
𝑋)) |
71 | | eqid 2651 |
. . . . 5
⊢ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
72 | 51, 52, 70, 71 | ovnn0val 41086 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((voln*‘𝑋)‘𝐴) = inf({𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
)) |
73 | | ssrab2 3720 |
. . . . . 6
⊢ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆
ℝ* |
74 | 73 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆
ℝ*) |
75 | 28, 30, 44 | sge0xrclmpt 40963 |
. . . . . . . 8
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈
ℝ*) |
76 | 75 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈
ℝ*) |
77 | | opelxpi 5182 |
. . . . . . . . . . . . . 14
⊢ ((((𝐶‘𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷‘𝑗)‘𝑘) ∈ ℝ) → 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉 ∈ (ℝ ×
ℝ)) |
78 | 53, 54, 77 | syl2anc 694 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉 ∈ (ℝ ×
ℝ)) |
79 | | eqid 2651 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) = (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) |
80 | 78, 79 | fmptd 6425 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉):𝑋⟶(ℝ ×
ℝ)) |
81 | 20, 20 | xpex 7004 |
. . . . . . . . . . . . . 14
⊢ (ℝ
× ℝ) ∈ V |
82 | 81 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (ℝ ×
ℝ) ∈ V) |
83 | | elmapg 7912 |
. . . . . . . . . . . . 13
⊢
(((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉):𝑋⟶(ℝ ×
ℝ))) |
84 | 82, 34, 83 | syl2anc 694 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉):𝑋⟶(ℝ ×
ℝ))) |
85 | 80, 84 | mpbird 247 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) ∈ ((ℝ × ℝ)
↑𝑚 𝑋)) |
86 | | eqid 2651 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
87 | 85, 86 | fmptd 6425 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)):ℕ⟶((ℝ ×
ℝ) ↑𝑚 𝑋)) |
88 | | ovexd 6720 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℝ × ℝ)
↑𝑚 𝑋) ∈ V) |
89 | | elmapg 7912 |
. . . . . . . . . . 11
⊢
((((ℝ × ℝ) ↑𝑚 𝑋) ∈ V ∧ ℕ ∈
V) → ((𝑗 ∈
ℕ ↦ (𝑘 ∈
𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ↔
(𝑗 ∈ ℕ ↦
(𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)):ℕ⟶((ℝ ×
ℝ) ↑𝑚 𝑋))) |
90 | 88, 30, 89 | syl2anc 694 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ↔
(𝑗 ∈ ℕ ↦
(𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)):ℕ⟶((ℝ ×
ℝ) ↑𝑚 𝑋))) |
91 | 87, 90 | mpbird 247 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚
ℕ)) |
92 | 91 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚
ℕ)) |
93 | | simpr 476 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
94 | | mptexg 6525 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 ∈ Fin → (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) ∈ V) |
95 | 33, 94 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) ∈ V) |
96 | 95 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) ∈ V) |
97 | 86 | fvmpt2 6330 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ ℕ ∧ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) ∈ V) → ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗) = (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
98 | 93, 96, 97 | syl2anc 694 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗) = (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
99 | 98 | coeq2d 5317 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗)) = ([,) ∘ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))) |
100 | 99 | fveq1d 6231 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘) = (([,) ∘ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑘)) |
101 | 100 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘) = (([,) ∘ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑘)) |
102 | 80 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉):𝑋⟶(ℝ ×
ℝ)) |
103 | | simpr 476 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
104 | 102, 103 | fvovco 39695 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑘) = ((1st ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘))[,)(2nd ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘)))) |
105 | | simpr 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
106 | | opex 4962 |
. . . . . . . . . . . . . . . . . . . 20
⊢
〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉 ∈ V |
107 | 106 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉 ∈ V) |
108 | 79 | fvmpt2 6330 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ 𝑋 ∧ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉 ∈ V) → ((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘) = 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) |
109 | 105, 107,
108 | syl2anc 694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘) = 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) |
110 | 109 | fveq2d 6233 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘)) = (1st ‘〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
111 | | fvex 6239 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶‘𝑗)‘𝑘) ∈ V |
112 | | fvex 6239 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷‘𝑗)‘𝑘) ∈ V |
113 | | op1stg 7222 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐶‘𝑗)‘𝑘) ∈ V ∧ ((𝐷‘𝑗)‘𝑘) ∈ V) → (1st
‘〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) = ((𝐶‘𝑗)‘𝑘)) |
114 | 111, 112,
113 | mp2an 708 |
. . . . . . . . . . . . . . . . . 18
⊢
(1st ‘〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) = ((𝐶‘𝑗)‘𝑘) |
115 | 114 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st
‘〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) = ((𝐶‘𝑗)‘𝑘)) |
116 | 110, 115 | eqtrd 2685 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘)) = ((𝐶‘𝑗)‘𝑘)) |
117 | 109 | fveq2d 6233 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘)) = (2nd ‘〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
118 | 111, 112 | op2nd 7219 |
. . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) = ((𝐷‘𝑗)‘𝑘) |
119 | 118 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd
‘〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) = ((𝐷‘𝑗)‘𝑘)) |
120 | 117, 119 | eqtrd 2685 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘)) = ((𝐷‘𝑗)‘𝑘)) |
121 | 116, 120 | oveq12d 6708 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((1st ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘))[,)(2nd ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘))) = (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
122 | 121 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((1st ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘))[,)(2nd ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘))) = (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
123 | 101, 104,
122 | 3eqtrrd 2690 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
124 | 123 | ixpeq2dva 7965 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
125 | 124 | iuneq2dv 4574 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
126 | 4, 125 | sseqtrd 3674 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
127 | 126 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
128 | | eqidd 2652 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))))) |
129 | 51 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
130 | 52 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → 𝑋 ≠ ∅) |
131 | 38 | adantlr 751 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑋⟶ℝ) |
132 | 42 | adantlr 751 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑋⟶ℝ) |
133 | 32, 129, 130, 131, 132 | hoidmvn0val 41119 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) = ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
134 | 133 | mpteq2dva 4777 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))))) |
135 | 134 | fveq2d 6233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))))) |
136 | 123 | eqcomd 2657 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘) = (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
137 | 136 | fveq2d 6233 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) = (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
138 | 137 | prodeq2dv 14697 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
139 | 138 | mpteq2dva 4777 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))))) |
140 | 139 | fveq2d 6233 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))))) |
141 | 140 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))))) |
142 | 128, 135,
141 | 3eqtr4d 2695 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))))) |
143 | 127, 142 | jca 553 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))))) |
144 | | nfcv 2793 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗𝑖 |
145 | | nfmpt1 4780 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗(𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
146 | 144, 145 | nfeq 2805 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
147 | | nfcv 2793 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝑖 |
148 | | nfcv 2793 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘ℕ |
149 | | nfmpt1 4780 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) |
150 | 148, 149 | nfmpt 4779 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
151 | 147, 150 | nfeq 2805 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
152 | | fveq1 6228 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → (𝑖‘𝑗) = ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗)) |
153 | 152 | coeq2d 5317 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → ([,) ∘ (𝑖‘𝑗)) = ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))) |
154 | 153 | fveq1d 6231 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → (([,) ∘ (𝑖‘𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
155 | 154 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝑖‘𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
156 | 151, 155 | ixpeq2d 39551 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
157 | 156 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
158 | 146, 157 | iuneq2df 39526 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
159 | 158 | sseq2d 3666 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → (𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ↔ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))) |
160 | | nfv 1883 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘 𝑗 ∈ ℕ |
161 | 151, 160 | nfan 1868 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∧ 𝑗 ∈ ℕ) |
162 | 154 | fveq2d 6233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → (vol‘(([,) ∘
(𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))) |
163 | 162 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → (𝑘 ∈ 𝑋 → (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))) |
164 | 163 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 → (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))) |
165 | 161, 164 | ralrimi 2986 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∧ 𝑗 ∈ ℕ) → ∀𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))) |
166 | 165 | prodeq2d 14696 |
. . . . . . . . . . . . 13
⊢ ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))) |
167 | 146, 166 | mpteq2da 4776 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))) |
168 | 167 | fveq2d 6233 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))))) |
169 | 168 | eqeq2d 2661 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) →
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))))) |
170 | 159, 169 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → ((𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ (𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))))))) |
171 | 170 | rspcev 3340 |
. . . . . . . 8
⊢ (((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
172 | 92, 143, 171 | syl2anc 694 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∃𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
173 | 76, 172 | jca 553 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ ℝ* ∧
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
174 | | eqeq1 2655 |
. . . . . . . . 9
⊢ (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) → (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
175 | 174 | anbi2d 740 |
. . . . . . . 8
⊢ (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) → ((𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ (𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
176 | 175 | rexbidv 3081 |
. . . . . . 7
⊢ (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) → (∃𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
177 | 176 | elrab 3396 |
. . . . . 6
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ↔
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ ℝ* ∧
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
178 | 173, 177 | sylibr 224 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) |
179 | | infxrlb 12202 |
. . . . 5
⊢ (({𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆ ℝ* ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) → inf({𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < ) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
180 | 74, 178, 179 | syl2anc 694 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → inf({𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < ) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
181 | 72, 180 | eqbrtrd 4707 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((voln*‘𝑋)‘𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
182 | 48, 50, 181 | syl2anc 694 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
183 | 47, 182 | pm2.61dan 849 |
1
⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |