Proof of Theorem ovnhoilem2
Step | Hyp | Ref
| Expression |
1 | | ovnhoilem2.m |
. . . . . . . . . 10
⊢ 𝑀 = {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
2 | 1 | eleq2i 2722 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑀 ↔ 𝑧 ∈ {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) |
3 | | rabid 3145 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ↔ (𝑧 ∈ ℝ* ∧
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
4 | 2, 3 | bitri 264 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑀 ↔ (𝑧 ∈ ℝ* ∧
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
5 | 4 | biimpi 206 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑀 → (𝑧 ∈ ℝ* ∧
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
6 | 5 | simprd 478 |
. . . . . 6
⊢ (𝑧 ∈ 𝑀 → ∃𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
7 | 6 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑀) → ∃𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
8 | | ovnhoilem2.l |
. . . . . . . . . 10
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
9 | | ovnhoilem2.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ Fin) |
10 | 9 | 3ad2ant1 1102 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → 𝑋 ∈ Fin) |
11 | | ovnhoilem2.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
12 | 11 | 3ad2ant1 1102 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → 𝐴:𝑋⟶ℝ) |
13 | | ovnhoilem2.b |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
14 | 13 | 3ad2ant1 1102 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → 𝐵:𝑋⟶ℝ) |
15 | | elmapi 7921 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
𝑖:ℕ⟶((ℝ
× ℝ) ↑𝑚 𝑋)) |
16 | 15 | ffvelrnda 6399 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
(𝑖‘𝑛) ∈ ((ℝ × ℝ)
↑𝑚 𝑋)) |
17 | | elmapi 7921 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖‘𝑛) ∈ ((ℝ × ℝ)
↑𝑚 𝑋) → (𝑖‘𝑛):𝑋⟶(ℝ ×
ℝ)) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
(𝑖‘𝑛):𝑋⟶(ℝ ×
ℝ)) |
19 | 18 | ffvelrnda 6399 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) ∧
𝑙 ∈ 𝑋) → ((𝑖‘𝑛)‘𝑙) ∈ (ℝ ×
ℝ)) |
20 | | xp1st 7242 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖‘𝑛)‘𝑙) ∈ (ℝ × ℝ) →
(1st ‘((𝑖‘𝑛)‘𝑙)) ∈ ℝ) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) ∧
𝑙 ∈ 𝑋) → (1st ‘((𝑖‘𝑛)‘𝑙)) ∈ ℝ) |
22 | | eqid 2651 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))) = (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))) |
23 | 21, 22 | fmptd 6425 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
(𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))):𝑋⟶ℝ) |
24 | | reex 10065 |
. . . . . . . . . . . . . . . 16
⊢ ℝ
∈ V |
25 | 24 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
ℝ ∈ V) |
26 | | 1nn 11069 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℕ |
27 | 26 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
1 ∈ ℕ) |
28 | 15, 27 | ffvelrnd 6400 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
(𝑖‘1) ∈
((ℝ × ℝ) ↑𝑚 𝑋)) |
29 | | elmapex 7920 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖‘1) ∈ ((ℝ
× ℝ) ↑𝑚 𝑋) → ((ℝ × ℝ) ∈ V
∧ 𝑋 ∈
V)) |
30 | 29 | simprd 478 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖‘1) ∈ ((ℝ
× ℝ) ↑𝑚 𝑋) → 𝑋 ∈ V) |
31 | 28, 30 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
𝑋 ∈
V) |
32 | 31 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
𝑋 ∈
V) |
33 | | elmapg 7912 |
. . . . . . . . . . . . . . 15
⊢ ((ℝ
∈ V ∧ 𝑋 ∈ V)
→ ((𝑙 ∈ 𝑋 ↦ (1st
‘((𝑖‘𝑛)‘𝑙))) ∈ (ℝ
↑𝑚 𝑋) ↔ (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))):𝑋⟶ℝ)) |
34 | 25, 32, 33 | syl2anc 694 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
((𝑙 ∈ 𝑋 ↦ (1st
‘((𝑖‘𝑛)‘𝑙))) ∈ (ℝ
↑𝑚 𝑋) ↔ (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))):𝑋⟶ℝ)) |
35 | 23, 34 | mpbird 247 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
(𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))) ∈ (ℝ
↑𝑚 𝑋)) |
36 | | eqid 2651 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))) = (𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))) |
37 | 35, 36 | fmptd 6425 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
(𝑛 ∈ ℕ ↦
(𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))):ℕ⟶(ℝ
↑𝑚 𝑋)) |
38 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚
ℕ)) |
39 | | nnex 11064 |
. . . . . . . . . . . . . . . 16
⊢ ℕ
∈ V |
40 | 39 | mptex 6527 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))) ∈ V |
41 | 40 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
(𝑛 ∈ ℕ ↦
(𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))) ∈ V) |
42 | | ovnhoilem2.f |
. . . . . . . . . . . . . . 15
⊢ 𝐹 = (𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
↦ (𝑛 ∈ ℕ
↦ (𝑙 ∈ 𝑋 ↦ (1st
‘((𝑖‘𝑛)‘𝑙))))) |
43 | 42 | fvmpt2 6330 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
(𝑛 ∈ ℕ ↦
(𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))) ∈ V) → (𝐹‘𝑖) = (𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))))) |
44 | 38, 41, 43 | syl2anc 694 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
(𝐹‘𝑖) = (𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))))) |
45 | 44 | feq1d 6068 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
((𝐹‘𝑖):ℕ⟶(ℝ
↑𝑚 𝑋) ↔ (𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))):ℕ⟶(ℝ
↑𝑚 𝑋))) |
46 | 37, 45 | mpbird 247 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
(𝐹‘𝑖):ℕ⟶(ℝ
↑𝑚 𝑋)) |
47 | 46 | 3ad2ant2 1103 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → (𝐹‘𝑖):ℕ⟶(ℝ
↑𝑚 𝑋)) |
48 | | xp2nd 7243 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖‘𝑛)‘𝑙) ∈ (ℝ × ℝ) →
(2nd ‘((𝑖‘𝑛)‘𝑙)) ∈ ℝ) |
49 | 19, 48 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) ∧
𝑙 ∈ 𝑋) → (2nd ‘((𝑖‘𝑛)‘𝑙)) ∈ ℝ) |
50 | | eqid 2651 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))) = (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))) |
51 | 49, 50 | fmptd 6425 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
(𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))):𝑋⟶ℝ) |
52 | | elmapg 7912 |
. . . . . . . . . . . . . . 15
⊢ ((ℝ
∈ V ∧ 𝑋 ∈ V)
→ ((𝑙 ∈ 𝑋 ↦ (2nd
‘((𝑖‘𝑛)‘𝑙))) ∈ (ℝ
↑𝑚 𝑋) ↔ (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))):𝑋⟶ℝ)) |
53 | 25, 32, 52 | syl2anc 694 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
((𝑙 ∈ 𝑋 ↦ (2nd
‘((𝑖‘𝑛)‘𝑙))) ∈ (ℝ
↑𝑚 𝑋) ↔ (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))):𝑋⟶ℝ)) |
54 | 51, 53 | mpbird 247 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
(𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))) ∈ (ℝ
↑𝑚 𝑋)) |
55 | | eqid 2651 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))) = (𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))) |
56 | 54, 55 | fmptd 6425 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
(𝑛 ∈ ℕ ↦
(𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))):ℕ⟶(ℝ
↑𝑚 𝑋)) |
57 | 39 | mptex 6527 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))) ∈ V |
58 | 57 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
(𝑛 ∈ ℕ ↦
(𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))) ∈ V) |
59 | | ovnhoilem2.s |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = (𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
↦ (𝑛 ∈ ℕ
↦ (𝑙 ∈ 𝑋 ↦ (2nd
‘((𝑖‘𝑛)‘𝑙))))) |
60 | 59 | fvmpt2 6330 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
(𝑛 ∈ ℕ ↦
(𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))) ∈ V) → (𝑆‘𝑖) = (𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))))) |
61 | 38, 58, 60 | syl2anc 694 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
(𝑆‘𝑖) = (𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))))) |
62 | 61 | feq1d 6068 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
((𝑆‘𝑖):ℕ⟶(ℝ
↑𝑚 𝑋) ↔ (𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))):ℕ⟶(ℝ
↑𝑚 𝑋))) |
63 | 56, 62 | mpbird 247 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
(𝑆‘𝑖):ℕ⟶(ℝ
↑𝑚 𝑋)) |
64 | 63 | 3ad2ant2 1103 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → (𝑆‘𝑖):ℕ⟶(ℝ
↑𝑚 𝑋)) |
65 | | simp3 1083 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘)) → 𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘)) |
66 | | ovnhoilem2.i |
. . . . . . . . . . . . . 14
⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
67 | 66 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘)) → 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
68 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑛 → (𝑖‘𝑗) = (𝑖‘𝑛)) |
69 | 68 | fveq1d 6231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑛 → ((𝑖‘𝑗)‘𝑘) = ((𝑖‘𝑛)‘𝑘)) |
70 | 69 | fveq2d 6233 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑛 → (1st ‘((𝑖‘𝑗)‘𝑘)) = (1st ‘((𝑖‘𝑛)‘𝑘))) |
71 | 69 | fveq2d 6233 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑛 → (2nd ‘((𝑖‘𝑗)‘𝑘)) = (2nd ‘((𝑖‘𝑛)‘𝑘))) |
72 | 70, 71 | oveq12d 6708 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑛 → ((1st ‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘))) = ((1st ‘((𝑖‘𝑛)‘𝑘))[,)(2nd ‘((𝑖‘𝑛)‘𝑘)))) |
73 | 72 | ixpeq2dv 7966 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑛 → X𝑘 ∈ 𝑋 ((1st ‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘))) = X𝑘 ∈ 𝑋 ((1st ‘((𝑖‘𝑛)‘𝑘))[,)(2nd ‘((𝑖‘𝑛)‘𝑘)))) |
74 | 73 | cbviunv 4591 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 ((1st ‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘))) = ∪
𝑛 ∈ ℕ X𝑘 ∈
𝑋 ((1st
‘((𝑖‘𝑛)‘𝑘))[,)(2nd ‘((𝑖‘𝑛)‘𝑘))) |
75 | 74 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 ((1st ‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘))) = ∪
𝑛 ∈ ℕ X𝑘 ∈
𝑋 ((1st
‘((𝑖‘𝑛)‘𝑘))[,)(2nd ‘((𝑖‘𝑛)‘𝑘)))) |
76 | 15 | ffvelrnda 6399 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑗 ∈ ℕ) →
(𝑖‘𝑗) ∈ ((ℝ × ℝ)
↑𝑚 𝑋)) |
77 | | elmapi 7921 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖‘𝑗) ∈ ((ℝ × ℝ)
↑𝑚 𝑋) → (𝑖‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑗 ∈ ℕ) →
(𝑖‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
79 | 78 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑗 ∈ ℕ) ∧
𝑘 ∈ 𝑋) → (𝑖‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
80 | | simpr 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑗 ∈ ℕ) ∧
𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
81 | 79, 80 | fvovco 39695 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑗 ∈ ℕ) ∧
𝑘 ∈ 𝑋) → (([,) ∘ (𝑖‘𝑗))‘𝑘) = ((1st ‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘)))) |
82 | 81 | ixpeq2dva 7965 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑗 ∈ ℕ) →
X𝑘
∈ 𝑋 (([,) ∘
(𝑖‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 ((1st ‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘)))) |
83 | 82 | iuneq2dv 4574 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ X𝑘 ∈
𝑋 ((1st
‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘)))) |
84 | | simpl 472 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚
ℕ)) |
85 | 40 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
(𝑛 ∈ ℕ ↦
(𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))) ∈ V) |
86 | 84, 85, 43 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑖) = (𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))))) |
87 | 86 | fveq1d 6231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
((𝐹‘𝑖)‘𝑛) = ((𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))))‘𝑛)) |
88 | | simpr 476 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
𝑛 ∈
ℕ) |
89 | | mptexg 6525 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑋 ∈ V → (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))) ∈ V) |
90 | 31, 89 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
(𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))) ∈ V) |
91 | 90 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
(𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))) ∈ V) |
92 | 36 | fvmpt2 6330 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ ℕ ∧ (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))))‘𝑛) = (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))) |
93 | 88, 91, 92 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
((𝑛 ∈ ℕ ↦
(𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))))‘𝑛) = (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))) |
94 | 87, 93 | eqtrd 2685 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
((𝐹‘𝑖)‘𝑛) = (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))) |
95 | 94 | fveq1d 6231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
(((𝐹‘𝑖)‘𝑛)‘𝑘) = ((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)) |
96 | 95 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) ∧
𝑘 ∈ 𝑋) → (((𝐹‘𝑖)‘𝑛)‘𝑘) = ((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)) |
97 | | eqidd 2652 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑘 ∈ 𝑋) → (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))) = (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))) |
98 | | simpr 476 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑘 ∈ 𝑋) ∧ 𝑙 = 𝑘) → 𝑙 = 𝑘) |
99 | 98 | fveq2d 6233 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑘 ∈ 𝑋) ∧ 𝑙 = 𝑘) → ((𝑖‘𝑛)‘𝑙) = ((𝑖‘𝑛)‘𝑘)) |
100 | 99 | fveq2d 6233 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑘 ∈ 𝑋) ∧ 𝑙 = 𝑘) → (1st ‘((𝑖‘𝑛)‘𝑙)) = (1st ‘((𝑖‘𝑛)‘𝑘))) |
101 | | simpr 476 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
102 | | fvexd 6241 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑘 ∈ 𝑋) → (1st ‘((𝑖‘𝑛)‘𝑘)) ∈ V) |
103 | 97, 100, 101, 102 | fvmptd 6327 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑘 ∈ 𝑋) → ((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘) = (1st ‘((𝑖‘𝑛)‘𝑘))) |
104 | 103 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) ∧
𝑘 ∈ 𝑋) → ((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘) = (1st ‘((𝑖‘𝑛)‘𝑘))) |
105 | 96, 104 | eqtrd 2685 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) ∧
𝑘 ∈ 𝑋) → (((𝐹‘𝑖)‘𝑛)‘𝑘) = (1st ‘((𝑖‘𝑛)‘𝑘))) |
106 | 61 | fveq1d 6231 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
((𝑆‘𝑖)‘𝑛) = ((𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))))‘𝑛)) |
107 | 106 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
((𝑆‘𝑖)‘𝑛) = ((𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))))‘𝑛)) |
108 | | mptexg 6525 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑋 ∈ V → (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))) ∈ V) |
109 | 31, 108 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
(𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))) ∈ V) |
110 | 109 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
(𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))) ∈ V) |
111 | 55 | fvmpt2 6330 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ ℕ ∧ (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))))‘𝑛) = (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))) |
112 | 88, 110, 111 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
((𝑛 ∈ ℕ ↦
(𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))))‘𝑛) = (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))) |
113 | 107, 112 | eqtrd 2685 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
((𝑆‘𝑖)‘𝑛) = (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))) |
114 | 113 | fveq1d 6231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
(((𝑆‘𝑖)‘𝑛)‘𝑘) = ((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)) |
115 | 114 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) ∧
𝑘 ∈ 𝑋) → (((𝑆‘𝑖)‘𝑛)‘𝑘) = ((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)) |
116 | | eqidd 2652 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑘 ∈ 𝑋) → (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))) = (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))) |
117 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑙 = 𝑘 → ((𝑖‘𝑛)‘𝑙) = ((𝑖‘𝑛)‘𝑘)) |
118 | 117 | fveq2d 6233 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑙 = 𝑘 → (2nd ‘((𝑖‘𝑛)‘𝑙)) = (2nd ‘((𝑖‘𝑛)‘𝑘))) |
119 | 118 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑘 ∈ 𝑋) ∧ 𝑙 = 𝑘) → (2nd ‘((𝑖‘𝑛)‘𝑙)) = (2nd ‘((𝑖‘𝑛)‘𝑘))) |
120 | | fvexd 6241 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑘 ∈ 𝑋) → (2nd ‘((𝑖‘𝑛)‘𝑘)) ∈ V) |
121 | 116, 119,
101, 120 | fvmptd 6327 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑘 ∈ 𝑋) → ((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘) = (2nd ‘((𝑖‘𝑛)‘𝑘))) |
122 | 121 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) ∧
𝑘 ∈ 𝑋) → ((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘) = (2nd ‘((𝑖‘𝑛)‘𝑘))) |
123 | 115, 122 | eqtrd 2685 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) ∧
𝑘 ∈ 𝑋) → (((𝑆‘𝑖)‘𝑛)‘𝑘) = (2nd ‘((𝑖‘𝑛)‘𝑘))) |
124 | 105, 123 | oveq12d 6708 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) ∧
𝑘 ∈ 𝑋) → ((((𝐹‘𝑖)‘𝑛)‘𝑘)[,)(((𝑆‘𝑖)‘𝑛)‘𝑘)) = ((1st ‘((𝑖‘𝑛)‘𝑘))[,)(2nd ‘((𝑖‘𝑛)‘𝑘)))) |
125 | 124 | ixpeq2dva 7965 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑛 ∈ ℕ) →
X𝑘
∈ 𝑋 ((((𝐹‘𝑖)‘𝑛)‘𝑘)[,)(((𝑆‘𝑖)‘𝑛)‘𝑘)) = X𝑘 ∈ 𝑋 ((1st ‘((𝑖‘𝑛)‘𝑘))[,)(2nd ‘((𝑖‘𝑛)‘𝑘)))) |
126 | 125 | iuneq2dv 4574 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
∪ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((((𝐹‘𝑖)‘𝑛)‘𝑘)[,)(((𝑆‘𝑖)‘𝑛)‘𝑘)) = ∪
𝑛 ∈ ℕ X𝑘 ∈
𝑋 ((1st
‘((𝑖‘𝑛)‘𝑘))[,)(2nd ‘((𝑖‘𝑛)‘𝑘)))) |
127 | 75, 83, 126 | 3eqtr4d 2695 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = ∪ 𝑛 ∈ ℕ X𝑘 ∈
𝑋 ((((𝐹‘𝑖)‘𝑛)‘𝑘)[,)(((𝑆‘𝑖)‘𝑛)‘𝑘))) |
128 | 127 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ))
→ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = ∪ 𝑛 ∈ ℕ X𝑘 ∈
𝑋 ((((𝐹‘𝑖)‘𝑛)‘𝑘)[,)(((𝑆‘𝑖)‘𝑛)‘𝑘))) |
129 | 128 | 3adant3 1101 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘)) → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = ∪ 𝑛 ∈ ℕ X𝑘 ∈
𝑋 ((((𝐹‘𝑖)‘𝑛)‘𝑘)[,)(((𝑆‘𝑖)‘𝑛)‘𝑘))) |
130 | 67, 129 | sseq12d 3667 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘)) → (𝐼 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ↔ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((((𝐹‘𝑖)‘𝑛)‘𝑘)[,)(((𝑆‘𝑖)‘𝑛)‘𝑘)))) |
131 | 65, 130 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘)) → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((((𝐹‘𝑖)‘𝑛)‘𝑘)[,)(((𝑆‘𝑖)‘𝑛)‘𝑘))) |
132 | 131 | 3adant3r 1363 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑛 ∈ ℕ X𝑘 ∈ 𝑋 ((((𝐹‘𝑖)‘𝑛)‘𝑘)[,)(((𝑆‘𝑖)‘𝑛)‘𝑘))) |
133 | 8, 10, 12, 14, 47, 64, 132 | hoidmvle 41135 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑛 ∈ ℕ ↦ (((𝐹‘𝑖)‘𝑛)(𝐿‘𝑋)((𝑆‘𝑖)‘𝑛))))) |
134 | | simpl 472 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑛 = 𝑗 ∧ 𝑙 ∈ 𝑋) → 𝑛 = 𝑗) |
135 | 134 | fveq2d 6233 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 = 𝑗 ∧ 𝑙 ∈ 𝑋) → (𝑖‘𝑛) = (𝑖‘𝑗)) |
136 | 135 | fveq1d 6231 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 = 𝑗 ∧ 𝑙 ∈ 𝑋) → ((𝑖‘𝑛)‘𝑙) = ((𝑖‘𝑗)‘𝑙)) |
137 | 136 | fveq2d 6233 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 = 𝑗 ∧ 𝑙 ∈ 𝑋) → (1st ‘((𝑖‘𝑛)‘𝑙)) = (1st ‘((𝑖‘𝑗)‘𝑙))) |
138 | 137 | mpteq2dva 4777 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑗 → (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))) = (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑗)‘𝑙)))) |
139 | 138 | fveq1d 6231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑗 → ((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘) = ((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑗)‘𝑙)))‘𝑘)) |
140 | 139 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 = 𝑗 ∧ 𝑘 ∈ 𝑋) → ((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘) = ((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑗)‘𝑙)))‘𝑘)) |
141 | | eqidd 2652 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝑋 → (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑗)‘𝑙))) = (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑗)‘𝑙)))) |
142 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑙 = 𝑘 → ((𝑖‘𝑗)‘𝑙) = ((𝑖‘𝑗)‘𝑘)) |
143 | 142 | fveq2d 6233 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑙 = 𝑘 → (1st ‘((𝑖‘𝑗)‘𝑙)) = (1st ‘((𝑖‘𝑗)‘𝑘))) |
144 | 143 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ 𝑋 ∧ 𝑙 = 𝑘) → (1st ‘((𝑖‘𝑗)‘𝑙)) = (1st ‘((𝑖‘𝑗)‘𝑘))) |
145 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝑋 → 𝑘 ∈ 𝑋) |
146 | | fvexd 6241 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝑋 → (1st ‘((𝑖‘𝑗)‘𝑘)) ∈ V) |
147 | 141, 144,
145, 146 | fvmptd 6327 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑋 → ((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑗)‘𝑙)))‘𝑘) = (1st ‘((𝑖‘𝑗)‘𝑘))) |
148 | 147 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 = 𝑗 ∧ 𝑘 ∈ 𝑋) → ((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑗)‘𝑙)))‘𝑘) = (1st ‘((𝑖‘𝑗)‘𝑘))) |
149 | 140, 148 | eqtrd 2685 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 = 𝑗 ∧ 𝑘 ∈ 𝑋) → ((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘) = (1st ‘((𝑖‘𝑗)‘𝑘))) |
150 | 136 | fveq2d 6233 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 = 𝑗 ∧ 𝑙 ∈ 𝑋) → (2nd ‘((𝑖‘𝑛)‘𝑙)) = (2nd ‘((𝑖‘𝑗)‘𝑙))) |
151 | 150 | mpteq2dva 4777 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑗 → (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))) = (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑗)‘𝑙)))) |
152 | 151 | fveq1d 6231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑗 → ((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘) = ((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑗)‘𝑙)))‘𝑘)) |
153 | 152 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 = 𝑗 ∧ 𝑘 ∈ 𝑋) → ((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘) = ((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑗)‘𝑙)))‘𝑘)) |
154 | | eqidd 2652 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝑋 → (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑗)‘𝑙))) = (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑗)‘𝑙)))) |
155 | 142 | fveq2d 6233 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑙 = 𝑘 → (2nd ‘((𝑖‘𝑗)‘𝑙)) = (2nd ‘((𝑖‘𝑗)‘𝑘))) |
156 | 155 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ 𝑋 ∧ 𝑙 = 𝑘) → (2nd ‘((𝑖‘𝑗)‘𝑙)) = (2nd ‘((𝑖‘𝑗)‘𝑘))) |
157 | | fvexd 6241 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝑋 → (2nd ‘((𝑖‘𝑗)‘𝑘)) ∈ V) |
158 | 154, 156,
145, 157 | fvmptd 6327 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑋 → ((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑗)‘𝑙)))‘𝑘) = (2nd ‘((𝑖‘𝑗)‘𝑘))) |
159 | 158 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 = 𝑗 ∧ 𝑘 ∈ 𝑋) → ((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑗)‘𝑙)))‘𝑘) = (2nd ‘((𝑖‘𝑗)‘𝑘))) |
160 | 153, 159 | eqtrd 2685 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 = 𝑗 ∧ 𝑘 ∈ 𝑋) → ((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘) = (2nd ‘((𝑖‘𝑗)‘𝑘))) |
161 | 149, 160 | oveq12d 6708 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 = 𝑗 ∧ 𝑘 ∈ 𝑋) → (((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)[,)((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)) = ((1st ‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘)))) |
162 | 161 | fveq2d 6233 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 = 𝑗 ∧ 𝑘 ∈ 𝑋) → (vol‘(((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)[,)((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘))) = (vol‘((1st
‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘))))) |
163 | 162 | prodeq2dv 14697 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → ∏𝑘 ∈ 𝑋 (vol‘(((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)[,)((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((1st ‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘))))) |
164 | 163 | cbvmptv 4783 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ ↦
∏𝑘 ∈ 𝑋 (vol‘(((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)[,)((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘((1st ‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘))))) |
165 | 164 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
(𝑛 ∈ ℕ ↦
∏𝑘 ∈ 𝑋 (vol‘(((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)[,)((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘((1st ‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘)))))) |
166 | 81 | eqcomd 2657 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑗 ∈ ℕ) ∧
𝑘 ∈ 𝑋) → ((1st ‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘))) = (([,) ∘ (𝑖‘𝑗))‘𝑘)) |
167 | 166 | fveq2d 6233 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑗 ∈ ℕ) ∧
𝑘 ∈ 𝑋) → (vol‘((1st
‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘)))) = (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) |
168 | 167 | prodeq2dv 14697 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑗 ∈ ℕ) →
∏𝑘 ∈ 𝑋 (vol‘((1st
‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘)))) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) |
169 | 168 | mpteq2dva 4777 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
(𝑗 ∈ ℕ ↦
∏𝑘 ∈ 𝑋 (vol‘((1st
‘((𝑖‘𝑗)‘𝑘))[,)(2nd ‘((𝑖‘𝑗)‘𝑘))))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) |
170 | 165, 169 | eqtrd 2685 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
(𝑛 ∈ ℕ ↦
∏𝑘 ∈ 𝑋 (vol‘(((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)[,)((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) |
171 | 170 | fveq2d 6233 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
(Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)[,)((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) |
172 | 171 | 3ad2ant2 1103 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) →
(Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)[,)((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) |
173 | 94 | adantll 750 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)) ∧
𝑛 ∈ ℕ) →
((𝐹‘𝑖)‘𝑛) = (𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))) |
174 | 113 | adantll 750 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)) ∧
𝑛 ∈ ℕ) →
((𝑆‘𝑖)‘𝑛) = (𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))) |
175 | 173, 174 | oveq12d 6708 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)) ∧
𝑛 ∈ ℕ) →
(((𝐹‘𝑖)‘𝑛)(𝐿‘𝑋)((𝑆‘𝑖)‘𝑛)) = ((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))(𝐿‘𝑋)(𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))))) |
176 | 9 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)) ∧
𝑛 ∈ ℕ) →
𝑋 ∈
Fin) |
177 | | ovnhoilem2.n |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ≠ ∅) |
178 | 177 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)) ∧
𝑛 ∈ ℕ) →
𝑋 ≠
∅) |
179 | 19 | adantlll 754 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)) ∧
𝑛 ∈ ℕ) ∧
𝑙 ∈ 𝑋) → ((𝑖‘𝑛)‘𝑙) ∈ (ℝ ×
ℝ)) |
180 | 179, 20 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)) ∧
𝑛 ∈ ℕ) ∧
𝑙 ∈ 𝑋) → (1st ‘((𝑖‘𝑛)‘𝑙)) ∈ ℝ) |
181 | 180, 22 | fmptd 6425 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)) ∧
𝑛 ∈ ℕ) →
(𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙))):𝑋⟶ℝ) |
182 | 179, 48 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)) ∧
𝑛 ∈ ℕ) ∧
𝑙 ∈ 𝑋) → (2nd ‘((𝑖‘𝑛)‘𝑙)) ∈ ℝ) |
183 | 182, 50 | fmptd 6425 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)) ∧
𝑛 ∈ ℕ) →
(𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙))):𝑋⟶ℝ) |
184 | 8, 176, 178, 181, 183 | hoidmvn0val 41119 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)) ∧
𝑛 ∈ ℕ) →
((𝑙 ∈ 𝑋 ↦ (1st
‘((𝑖‘𝑛)‘𝑙)))(𝐿‘𝑋)(𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))) = ∏𝑘 ∈ 𝑋 (vol‘(((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)[,)((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)))) |
185 | 175, 184 | eqtrd 2685 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)) ∧
𝑛 ∈ ℕ) →
(((𝐹‘𝑖)‘𝑛)(𝐿‘𝑋)((𝑆‘𝑖)‘𝑛)) = ∏𝑘 ∈ 𝑋 (vol‘(((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)[,)((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)))) |
186 | 185 | mpteq2dva 4777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ))
→ (𝑛 ∈ ℕ
↦ (((𝐹‘𝑖)‘𝑛)(𝐿‘𝑋)((𝑆‘𝑖)‘𝑛))) = (𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)[,)((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘))))) |
187 | 186 | fveq2d 6233 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ))
→ (Σ^‘(𝑛 ∈ ℕ ↦ (((𝐹‘𝑖)‘𝑛)(𝐿‘𝑋)((𝑆‘𝑖)‘𝑛)))) =
(Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)[,)((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)))))) |
188 | 187 | 3adant3 1101 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) →
(Σ^‘(𝑛 ∈ ℕ ↦ (((𝐹‘𝑖)‘𝑛)(𝐿‘𝑋)((𝑆‘𝑖)‘𝑛)))) =
(Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝑙 ∈ 𝑋 ↦ (1st ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)[,)((𝑙 ∈ 𝑋 ↦ (2nd ‘((𝑖‘𝑛)‘𝑙)))‘𝑘)))))) |
189 | | simp3 1083 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) |
190 | 172, 188,
189 | 3eqtr4d 2695 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) →
(Σ^‘(𝑛 ∈ ℕ ↦ (((𝐹‘𝑖)‘𝑛)(𝐿‘𝑋)((𝑆‘𝑖)‘𝑛)))) = 𝑧) |
191 | 190 | 3adant3l 1362 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) →
(Σ^‘(𝑛 ∈ ℕ ↦ (((𝐹‘𝑖)‘𝑛)(𝐿‘𝑋)((𝑆‘𝑖)‘𝑛)))) = 𝑧) |
192 | 133, 191 | breqtrd 4711 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → (𝐴(𝐿‘𝑋)𝐵) ≤ 𝑧) |
193 | 192 | 3exp 1283 |
. . . . . . 7
⊢ (𝜑 → (𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) →
((𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → (𝐴(𝐿‘𝑋)𝐵) ≤ 𝑧))) |
194 | 193 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑀) → (𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) →
((𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → (𝐴(𝐿‘𝑋)𝐵) ≤ 𝑧))) |
195 | 194 | rexlimdv 3059 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑀) → (∃𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → (𝐴(𝐿‘𝑋)𝐵) ≤ 𝑧)) |
196 | 7, 195 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑀) → (𝐴(𝐿‘𝑋)𝐵) ≤ 𝑧) |
197 | 196 | ralrimiva 2995 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝑀 (𝐴(𝐿‘𝑋)𝐵) ≤ 𝑧) |
198 | | ssrab2 3720 |
. . . . . 6
⊢ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆
ℝ* |
199 | 1, 198 | eqsstri 3668 |
. . . . 5
⊢ 𝑀 ⊆
ℝ* |
200 | 199 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑀 ⊆
ℝ*) |
201 | | icossxr 12296 |
. . . . 5
⊢
(0[,)+∞) ⊆ ℝ* |
202 | 8, 9, 11, 13 | hoidmvcl 41117 |
. . . . 5
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) ∈ (0[,)+∞)) |
203 | 201, 202 | sseldi 3634 |
. . . 4
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) ∈
ℝ*) |
204 | | infxrgelb 12203 |
. . . 4
⊢ ((𝑀 ⊆ ℝ*
∧ (𝐴(𝐿‘𝑋)𝐵) ∈ ℝ*) → ((𝐴(𝐿‘𝑋)𝐵) ≤ inf(𝑀, ℝ*, < ) ↔
∀𝑧 ∈ 𝑀 (𝐴(𝐿‘𝑋)𝐵) ≤ 𝑧)) |
205 | 200, 203,
204 | syl2anc 694 |
. . 3
⊢ (𝜑 → ((𝐴(𝐿‘𝑋)𝐵) ≤ inf(𝑀, ℝ*, < ) ↔
∀𝑧 ∈ 𝑀 (𝐴(𝐿‘𝑋)𝐵) ≤ 𝑧)) |
206 | 197, 205 | mpbird 247 |
. 2
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) ≤ inf(𝑀, ℝ*, <
)) |
207 | 66 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
208 | | nfv 1883 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
209 | 11 | ffvelrnda 6399 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
210 | 13 | ffvelrnda 6399 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
211 | 210 | rexrd 10127 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈
ℝ*) |
212 | 208, 209,
211 | hoissrrn2 41113 |
. . . . 5
⊢ (𝜑 → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ (ℝ
↑𝑚 𝑋)) |
213 | 207, 212 | eqsstrd 3672 |
. . . 4
⊢ (𝜑 → 𝐼 ⊆ (ℝ ↑𝑚
𝑋)) |
214 | 9, 177, 213, 1 | ovnn0val 41086 |
. . 3
⊢ (𝜑 → ((voln*‘𝑋)‘𝐼) = inf(𝑀, ℝ*, <
)) |
215 | 214 | eqcomd 2657 |
. 2
⊢ (𝜑 → inf(𝑀, ℝ*, < ) =
((voln*‘𝑋)‘𝐼)) |
216 | 206, 215 | breqtrd 4711 |
1
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼)) |